Tetrahydrofuroindoles by a Palladium-Catalyzed Asymmetric Dearomatization

Significance: The authors developed a palladium-catalyzed diastereoselective and enantioselective dearomative formal [3+2] cycloaddition for the synthesis of tetrahydrofuroindoles. Remarkably, the polarity of the solvent was found to play a key role in the diastereoselectivity. Compared with toluene, the reactions in acetonitrile occurred faster and produced the reversed diastereoisomer with higher enantioselectivity.

Comment: Mechanistic studies were conducted to illustrate the origin of the diastereodivergency. The kinetic experiments indicate that the reactions in different solvents proceed by the same pathway with different rate-limiting steps, thereby leading to a reversed stereocontrol. ESI-MS experiments support the existence of key palladium complex intermediates and the proposed catalytic cycle. Several transformations of one of the products were also demonstrated.

SYNFACTS Contributors: Mark Lautens, Tamara Beisel

SYNFACTS 2018, 14(04), 0375 Published online: 16.03.2018
DOI: 10.1055/s-0037-1609410; Reg-No.: L02318SF

Category
Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words
palladium catalysis
catalytic asymmetric dearomatization
[3+2] cycloaddition
tetrahydrofuroindoles