Synthesis 2018; 50(09): 1773-1782
DOI: 10.1055/s-0037-1609418
short review
© Georg Thieme Verlag Stuttgart · New York

Diels–Alder Reactions of 1,2-Dihydropyridines: An Efficient Tool for the Synthesis of Isoquinuclidines

Eduarda M. P. Silva*
a   LAQV, REQUIMTE, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal   Email: esilva@ff.up.pt
b   QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal, Email: artur.silva@ua.pt
,
Djenisa H. A. Rocha
b   QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal, Email: artur.silva@ua.pt
,
b   QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal, Email: artur.silva@ua.pt
› Author Affiliations
Thanks are due to University of Aveiro and FCT/MEC for the financial support of the QOPNA research unit (FCTUID/QUI/00062/2013) through national funds and, where applicable, co-financed by the FEDER, within the PT2020 Partnership Agreement.
Further Information

Publication History

Received: 28 January 2018

Accepted after revision: 26 February 2018

Publication Date:
04 April 2018 (online)


Abstract

The Diels–Alder reaction of 1,2-dihydropyridines with different dienophiles is a well-established and straightforward method for the synthesis of isoquinuclidines. Nevertheless, the enantioselective preparation of isoquinuclidines using organocatalysts or organometallic catalysts is rather unexplored. This succinct review offers readers an overall perspective of the most important recent developments and concepts related to this topic.

1 Introduction

2 Asymmetric Diels–Alder Reaction of 1,2-Dihydropyridines

2.1 Transition-Metal-Catalyzed Reactions

2.2 Organocatalyzed Reactions

3 Diels–Alder Reaction of 1,2-Dihydropyridines in the Synthesis of Biologically Valuable Compounds

4 Conclusion

 
  • References

  • 1 Faruk-Khan MO. Levi MS. Clark CR. Ablordeppey SY. Law S.-L. Wilson NH. Borne RF. Stud. Nat. Prod. Chem. 2008; 34: 753
    • 2a Neuss N. Gorman M. Svoboda GH. Maciak G. Beer CT. J. Am. Chem. Soc. 1959; 81: 4754
    • 2b Svoboda GH. Lloydia 1961; 24: 173
  • 3 Kim CU. Lew W. Williams MA. Liu H. Zhang L. Swaminathan S. Bischofberger N. Chen MS. Mendel DB. Tai CY. Laver WG. Stevens RC. J. Am. Chem. Soc. 1997; 119: 681
  • 4 Takenaka N. Huang Y. Rawal VH. Tetrahedron 2002; 58: 8299
    • 5a Nakano H. Tsugawa N. Fujita R. Tetrahedron Lett. 2005; 46: 5677
    • 5b Nakano H. Tsugawa N. Takahashi K. Okuyama Y. Fujita R. Tetrahedron 2006; 62: 10879
  • 6 Hutabarat ND. M. R. Seki C. Shimizu T. Hirama M. Kohari Y. Nakano H. Uwai K. Takano N. Kwon E. Matsuyama H. Heterocycles 2012; 86: 203
    • 7a Hirama M. Kato Y. Seki C. Matsuyama H. Oshikiri N. Iyoda M. Chem. Lett. 2008; 37: 924
    • 7b Hirama M. Kato Y. Seki C. Nakano H. Takeshita M. Oshikiri N. Iyoda M. Matsuyama H. Tetrahedron 2010; 66: 7618
    • 8a Seki C. Hirama M. Hutabarat ND. M. R. Takada J. Suttibut C. Takahashi H. Takaguchi T. Kohari Y. Nakano H. Uwai K. Takano N. Yasui M. Okuyama Y. Takeshita M. Matsuyama H. Tetrahedron 2012; 68: 1774
    • 8b Hirama M. Suttibut C. Hutabarat ND. M. R. Seki C. Sakuta N. Tsuchiya T. Kohari Y. Nakano H. Uwai K. Takano N. Yasui M. Okuyama Y. Osone K. Takeshita M. Matsuyama H. Heterocycles 2012; 84: 377
  • 9 Gutmann V. In The Donor Acceptor Approach to Molecular Interactions. Plenum Press; New York: 1978
  • 10 Hatano M. Goto Y. Izumiseki A. Akakura M. Ishihara K. J. Am. Chem. Soc. 2015; 137: 13472
  • 11 Martin RM. Bergman RG. Ellman JA. Org. Lett. 2013; 15: 444
    • 12a Ahrendt KA. Borths CJ. MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
    • 12b Lelais G. MacMillan DW. C. Aldrichimica Acta 2006; 39: 79
    • 13a Satoh N. Akiba T. Yokoshima S. Fukuyama T. Angew. Chem. Int. Ed. 2007; 46: 5734
    • 13b Satoh N. Akiba T. Yokoshima S. Fukuyama T. Tetrahedron 2009; 65: 3239
    • 14a Nakano H. Osone K. Takeshita M. Kwon E. Seki C. Matsuyama H. Takano N. Kohari Y. Chem. Commun. 2010; 46: 4827
    • 14b Suttibut C. Kohari Y. Igarashi K. Nakano H. Hirama M. Seki C. Matsuyama H. Uwai K. Takano N. Okuyama Y. Osone K. Takeshita M. Kwon E. Tetrahedron Lett. 2011; 52: 4745
    • 14c Sakuta Y. Kohari Y. Romauli Hutabarat ND. M. Uwai K. Kwon E. Okuyama Y. Seki C. Matsuyama H. Takano N. Tokiwa M. Takeshita M. Nakano H. Heterocycles 2012; 86: 1379
    • 14d Kohari Y. Okuyama Y. Kwon E. Furuyama T. Kobayashi N. Otuki T. Kumagai J. Seki C. Uwai K. Dai G. Iwasa T. Nakano H. J. Org. Chem. 2014; 79: 9500
    • 14e Okuyama Y. Osone K. Nakano H. Takeshita M. Heterocycles 2012; 84: 1209
  • 15 Takahashi T. Reddy UV. S. Kohari Y. Seki C. Furuyama T. Kobayashi N. Okuyama Y. Kwon E. Uwai K. Tokiwa M. Takeshita M. Nakano H. Tetrahedron Lett. 2016; 57: 5771
  • 16 Ishihara K. Yamada H. Akakura M. Chem. Commun. 2014; 50: 6357
  • 17 Singh TP. Singh OM. Mini-Rev. Med. Chem. 2018; 18: 9
    • 18a Chen F.-E. Huang J. Chem. Rev. 2005; 105: 4671
    • 18b Leonard J. Nat. Prod. Rep. 1999; 16: 319
    • 19a Woodward RB. Bader FE. Bickel H. Frey AJ. Kierstead RW. J. Am. Chem. Soc. 1956; 78: 2023
    • 19b Woodward RB. Bader FE. Bickel H. Frey AJ. Kierstead RW. J. Am. Chem. Soc. 1956; 78: 2657
    • 19c Woodward RB. Bader FE. Bickel H. Frey AJ. Kierstead RW. Tetrahedron 1958; 2: 1
  • 20 Wender PA. Schaus JM. White AW. J. Am. Chem. Soc. 1980; 102: 6157
  • 21 Baxter EW. Labaree D. Ammon HL. Mariano PS. J. Am. Chem. Soc. 1990; 112: 7682
  • 22 Szántay C. Blaskó G. Honty K. Baitz-Gács E. Tamás J. Tőke L. Liebigs Ann. Chem. 1983; 1292
    • 23a Wenkert E. Dave KG. Haglid F. J. Am. Chem. Soc. 1965; 87: 5461
    • 23b Wenkert E. Sprague PW. Webb RL. J. Org. Chem. 1973; 38: 4305
  • 24 Barbe G. Fiset D. Charette AB. J. Org. Chem. 2011; 76: 5354
  • 25 Ma X. Gang DR. Nat. Prod. Rep. 2004; 21: 752