W. CHEN*, D. MENG, B. N'ZEMBA, W. J. MORRIS (MERCK & CO, INC., RAHWAY, USA) Palladium-Catalyzed Enantioselective Synthesis of Cyclic Sulfamidates and Application to a Synthesis of Verubecestat

Org. Lett. 2018, 20, 1265-1268.

Synthesis of Verubecestat

Significance: Verubecestat (MK-8931) is a β -secretase inhibitor that is of interest for the treatment of Alzheimer's disease. The key step in the μ mol-scale synthesis depicted is the construction of the aza-quaternary center in fragment D through a palladium-catalyzed, enantioselective addition of arylboronic acid B to cyclic iminosulfate A. The desired cyclic sulfamidate D was obtained in 90% yield and 99% ee.

SYNFACTS Contributors: Philip Kocienski
Synfacts 2018, 14(06), 0555 Published online: 17.05.2018 **DOI:** 10.1055/s-0037-1609518; **Reg-No.:** K02018SF

Comment: The scope of the palladium-catalyzed enantioselective arylation reaction was explored using seven cyclic iminosulfates and eleven arylboronic acids. The reaction tolerates electron-rich, electron-poor, and *ortho*-substituted arylboronic acids and provides cyclic sulfamidates in high yields with excellent enantioselectivities. This palladium catalyst system significantly expands the scope for the asymmetric arylation of ketimines.

Verubecestat

Category

Synthesis of Natural Products and Potential Drugs

Key words

verubecestat

β-secretase inhibtor

palladium-catalyzed arylation

enantioselective addition

ketimines

iminosulfates

sulfamidates

555