Synthesis 2018; 50(23): 4668-4682
DOI: 10.1055/s-0037-1609563
paper
© Georg Thieme Verlag Stuttgart · New York

N-Heterocycle-Triggered MCRs: An Approach to the Concise Synthesis of Perfluoroalkylated Spiro-1,3-oxazines

Gang Liu
a   Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. of China   Email: wgcao@staff.shu.edu.cn   Email: yehao7171@shu.edu.cn
,
Yueci Wu
a   Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. of China   Email: wgcao@staff.shu.edu.cn   Email: yehao7171@shu.edu.cn
,
Jing Han
a   Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. of China   Email: wgcao@staff.shu.edu.cn   Email: yehao7171@shu.edu.cn
,
Weimin He
a   Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. of China   Email: wgcao@staff.shu.edu.cn   Email: yehao7171@shu.edu.cn
,
Jie Chen
a   Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. of China   Email: wgcao@staff.shu.edu.cn   Email: yehao7171@shu.edu.cn
,
Hongmei Deng
b   Laboratory for Microstructures and Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444, P. R. of China
,
Min Shao
b   Laboratory for Microstructures and Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444, P. R. of China
,
Hui Zhang*
a   Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. of China   Email: wgcao@staff.shu.edu.cn   Email: yehao7171@shu.edu.cn
b   Laboratory for Microstructures and Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444, P. R. of China
,
Weiguo Cao*
a   Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. of China   Email: wgcao@staff.shu.edu.cn   Email: yehao7171@shu.edu.cn
c   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
d   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
› Author Affiliations
The authors are grateful to the National Natural Science Foundation of China (NSFC) (Grant No. 21672138, 21542005, 21272152) for the financial support.
Further Information

Publication History

Received: 07 May 2018

Accepted after revision: 29 June 2018

Publication Date:
08 August 2018 (online)


Abstract

Multicomponent reactions involving methyl perfluoroalk-2-ynoates initiated by N-heterocycles (quinoline, isoquinoline, and benzothiazole) in the presence of isatins and diaryl 1,2-diketones allowed efficient access to trifluoromethyl- or other perfluoroalkyl-substituted spiro-1,3-oxazine derivatives. This facile transformation is regioselective and proceeded smoothly through a 1,4-dipolar intermediate under mild conditions, affording the products in good to excellent yields.

Supporting Information

 
  • References

    • 1a Marson CM. Chem. Soc. Rev. 2011; 40: 5514
    • 1b Ding ZG. Zhao JY. Li MG. Huang R. Li QM. Cui XL. Zhu HJ. Wen ML. J. Nat. Prod. 2012; 75: 1994
    • 1c Kaminski K. Obniska J. Dybala M. Eur. J. Med. Chem. 2008; 43: 53
    • 1d Borrero NV. Aponick A. J. Org. Chem. 2012; 77: 8410
    • 2a Saragi TP. I. Spehr T. Siebert A. Lieker TF. Salbeck J. Chem. Rev. 2007; 107: 1011
    • 2b Berkovic G. Krongauz V. Weiss V. Chem. Rev. 2000; 100: 1741
    • 2c Yuan L. Lin WY. Zheng KB. Zhu SS. Acc. Chem. Res. 2013; 46: 1462
    • 2d Chen XQ. Pradhan T. Wang FJ. Kim S. Yoon J. Chem. Rev. 2011; 112: 1910
    • 2e Lee CK. Davis DA. White SR. Moore JS. Sottos NR. Braun PV. J. Am. Chem. Soc. 2010; 132: 16107
    • 2f Tomasulo M. Sortino S. White AJ. P. Raymo FM. J. Org. Chem. 2005; 70: 8180

      For some selected examples:
    • 3a Nair V. Deepthi A. Ashok D. Paul AE. Raveendran RR. Tetrahedron 2014; 70: 3085
    • 3b Yavari I. Mirzaei A. Moradi L. Khalili G. Tetrahedron Lett. 2010; 51: 396
    • 3c Yavari I. Seyfi S. Hossaini Z. Tetrahedron Lett. 2010; 51: 2193
    • 3d Yadav JS. Reddy BV. S. Yadav NN. Gupta MK. Sridhar B. J. Org. Chem. 2008; 73: 6857
    • 3e Bhunia A. Roy T. Pachfule P. Rajamohanan PR. Biju AT. Angew. Chem. Int. Ed. 2013; 52: 10040
    • 3f Nair V. Devipriya S. Suresh E. Tetrahedron 2008; 64: 3567
    • 3g Nair V. Sreekanth AR. Abhilash NP. Biju AT. N. Varma L. Viji S. Mathew S. ARKIVOC 2005; (xi): 178
    • 3h Zhang LJ. Yan CG. Mol. Divers. 2014; 18: 787
    • 3i Zhang J. Yan CG. Tetrahedron 2015; 71: 6681
    • 3j Nair V. Sreekanth AR. Biju AT. Rath NP. Tetrahedron Lett. 2003; 44: 729
    • 3k Nair V. Devipriya S. Eringathodi S. Tetrahedron Lett. 2007; 48: 3667
    • 3l Yavari I. Hossaini Z. Sabbaghan M. Darjani MG. Monatsh. Chem. 2007; 138: 677
    • 3m Teimouri MB. Ahmadian TA. S. Heravi MR. P. Bazhrang R. Tetrahedron 2009; 65: 8120
    • 3n Esmaeili AA. Nazer M. Synlett 2009; 2119
    • 3o Wang GW. Li JX. Org. Biomol. Chem. 2006; 4: 4063

      For selected reviews, see:
    • 4a Chen P. Liu G. Synthesis 2013; 45: 2919
    • 4b Tomashenko OA. Grushin VV. Chem. Rev. 2011; 111: 4475
    • 4c Nie J. Guo H. Cahard D. Ma J. Chem. Rev. 2011; 111: 455
    • 4d Zeng Y. Zhang L. Zhao Y. Ni C. Zhao J. Hu J. J. Am. Chem. Soc. 2013; 135: 2955
    • 4e He Z. Zhang R. Hu M. Li L. Ni C. Hu J. Chem. Sci. 2013; 4: 3478
    • 4f Mu X. Wu T. Wang HY. Guo YL. Liu G. J. Am. Chem. Soc. 2012; 134: 878
    • 4g Chen C. Chu L. Qing F. J. Am. Chem. Soc. 2012; 134: 12454
    • 4h Zhu R. Buchwald SL. J. Am. Chem. Soc. 2012; 134: 12462
    • 4i Mu X. Chen S. Zhen X. Liu G. Chem. Eur. J. 2011; 17: 6039
    • 4j Chu L. Qing FL. J. Am. Chem. Soc. 2012; 134: 1298
    • 5a Badiang JG. Aube J. J. Org. Chem. 1996; 61: 2484
    • 5b Khumtaveeporn K. Alper H. J. Org. Chem. 1995; 60: 8142
    • 5c Larksarp C. Alper H. J. Org. Chem. 1999; 64: 4152
    • 5d Basheer A. Rappoport Z. J. Org. Chem. 2006; 71: 9743
    • 6a Ihmels H. Mattay J. May F. Thomas L. Org. Biomol. Chem. 2013; 11: 5184
    • 6b Copley GJ. Gillmore G. Crisman J. Kodis G. Gray CL. Cherry BR. Sherman BD. Liddell PA. Paquette MM. Kelbauskas L. Frank NL. Moore AL. T. Moore A. Gust D. J. Am. Chem. Soc. 2014; 136: 1199
    • 6c Zou Q. Li X. Zhou J. Bai K. Ågren H. Dyes Pigm. 2014; 107: 174

      For some recent examples, see:
    • 7a Shirinian VZ. M. Krayushkin MD. Nikalin M. Shimkin AA. Vorontsova LG. Starikova ZA. ARKIVOC 2005; (vii): : 72
    • 7b Chen XY. Wang JL. Lin XF. Wu Q. Tetrahedron 2016; 72: 3318
    • 7c Wang JL. Chen XY. Wu Q. Lin XF. Adv. Synth. Catal. 2014; 356: 999
    • 7d Noto N. Miyazawa K. Koike T. Akita M. Org. Lett. 2015; 17: 3710
    • 7e Rane BS. M. Kazi AS. Bagul M. Shelar DP. Toche RB. Jachak MN. J. Fluoresc. 2010; 20: 415
    • 7f Siddiqui IR. Srivastava A. Rai P. Srivastava A. Srivastava A. J. Heterocycl. Chem. 2015; 52: 1415
    • 7g Gong H. Sun J. Yan CG. Tetrahedron 2014; 70: 6641
    • 7h Sun J. Gong H. Yan CG. Tetrahedron 2013; 69: 10235
  • 8 For a recent review, see: Sun XC. Han J. Chen J. Zhang H. Cao WG. Chem. Rec. 2016; 16: 907
  • 9 4k; Unit cell parameters: a: 10.592(5)Å b 26.088(11)Å c 9.096(4)Å, α 90.00° β 96.425(5)° γ 90.00°; space group: P 21/c (14). CCDC 1525130 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 10 5k; Unit cell parameters: a: 11.896(8)Å b 15.726(11)Å c 13.275(9)Å, α 90.00° β 91.321(9)° γ 90.00°; space group: P 21/c (14). CCDC 1525127 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 11 Hamper BC. Org. Synth. 1992; 70: 246