Synthesis 2018; 50(19): 3902-3910
DOI: 10.1055/s-0037-1609564
paper
© Georg Thieme Verlag Stuttgart · New York

Electrophilic Activation of Carboxylic Anhydrides for Nucleophilic Acylation Reactions

Varun Kumar
Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad 121001, India   Email: dinesh.mahajan@thsti.res.in   Email: chemidinesh@gmail.com
,
Anil Rana
Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad 121001, India   Email: dinesh.mahajan@thsti.res.in   Email: chemidinesh@gmail.com
,
Chhuttan Lal Meena
Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad 121001, India   Email: dinesh.mahajan@thsti.res.in   Email: chemidinesh@gmail.com
,
Nidhi Sharma
Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad 121001, India   Email: dinesh.mahajan@thsti.res.in   Email: chemidinesh@gmail.com
,
Yashwant Kumar
Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad 121001, India   Email: dinesh.mahajan@thsti.res.in   Email: chemidinesh@gmail.com
,
Dinesh Mahajan*
Drug Discovery Research Center, Translational Health Science and Technology Institute, Faridabad 121001, India   Email: dinesh.mahajan@thsti.res.in   Email: chemidinesh@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 26 May 2018

Accepted after revision: 29 June 2018

Publication Date:
14 August 2018 (online)


Abstract

Nucleophilic acylation of symmetrical carboxylic anhydrides has inherited limitation of reaction efficiency along with relatively poor reactivity. Traditionally, one equivalent carboxylic acid is generated during nucleophilic acylation of a symmetrical anhydride, which always limits the yield of final product to 50% or less. This is a major drawback, which discourages the use of anhydrides for laboratory or industrial applications. Electrophilic activation of carboxylic anhydride using methanesulfonyl chloride is found to be an efficient method for nucleophilic acylation, which increases product yield by restricting the formation of corresponding acid as a side product. The developed protocol found to be a mild and high yielding methodology for one-pot nucleophilic acylation of carboxylic anhydrides with several type of N- and S-nucleophiles demonstrating appreciable functional group tolerance.

Supporting Information

 
  • References

    • 1a Bioactive Carboxylic Compound Classes: Pharmaceuticals and Agrochemicals. Lamberth C. Dinges J. Wiley-VCH; Weinheim: 2016
    • 1b Acton QA. Carboxylic Acids: Advances in Research and Application 2012
    • 1c Otera J. Esterification . Wiley-VCH; Weinheim: 2003
    • 1d Geurts M. Poupaert JH. Scriba GK. Lambert DM. J. Med. Chem. 1998; 41: 24
    • 1e Hoyle J. The Synthetic Uses of Carboxlic Acids and Derivatives. In The Chemistry of Acid Derivatives. Vol. 2. Patai S. Wiley; Chichester: 1992: 615
    • 1f Bhutani S. Chemistry of Biomolecules . Ane Books Pvt Ltd; New Delhi: 2009
    • 1g Brown DG. Bostrom J. J. Med. Chem. 2016; 59: 4443
    • 1h de Figueiredo RM. Suppo J.-S. Campagne J.-M. Chem. Rev. 2016; 116: 12029
    • 1i Pattabiraman VR. Bode JW. Nature 2011; 480: 471
    • 1j Roughley SD. Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 1k Carey JS. Laffan D. Thomson C. Williams MT. Org. Biomol. Chem. 2006; 4: 2337
    • 2a McMurry JE. Organic Chemistry with Biological Applications . Cengage Learning; Boston: 2014
    • 2b Surhone LM. Timpledon MT. Marseken SF. Nucleophilic Acyl Substitution . VDM Publishing; Saarbrücken: 2010
    • 2c Comprehensive Organic Functional Group Transformations: Synthesis: Carbon with One Heteroatom Attached by a Single Bond. Vol. 2. Katritzky AR. Ley SV. Meth-Cohn O. Rees CW. Elsevier; Amsterdam: 1995
    • 2d Lever OW. Jr. Tetrahedron 1976; 32: 1943
    • 2e Moon HK. Sung GH. Kim BR. Park JK. Yoon YJ. Yoon HJ. Adv. Synth. Catal. 2016; 358: 1725
    • 2f Dunetz JR. Magano J. Weisenburger GA. Org. Process Res. Dev. 2016; 20: 140
    • 2g Birrell JA. Desrosiers J.-N. Jacobsen EN. J. Am. Chem. Soc. 2011; 133: 13872
    • 2h Hardee DJ. Kovalchuke L. Lambert TH. J. Am. Chem. Soc. 2010; 132: 5002
    • 2i Valeur E. Bradley M. Chem. Soc. Rev. 2009; 38: 606
    • 2j Kawabata T. Muramatsu W. Nishio T. Shibata T. Schedel H. J. Am. Chem. Soc. 2007; 129: 12890
    • 3a Carey FA. Sundberg RJ. Advanced Organic Chemistry: Part A: Structure and Mechanisms. Springer; Berlin: 2007
    • 3b Das R. Chakraborty D. Synthesis 2011; 1621
    • 3c Sakakura A. Kawajiri K. Ohkubo T. Kosugi Y. Ishihara K. J. Am. Chem. Soc. 2007; 129: 14775
    • 3d Naik S. Bhattacharjya G. Talukdar B. Patel BK. Eur. J. Org. Chem. 2004; 1254
    • 4a Liu Y. Liu R. Szostak M. Org. Biomol. Chem. 2017; 15: 1780
    • 4b Phakhodee W. Duangkamol C. Wangngae S. Pattarawarapan M. Tetrahedron Lett. 2016; 57: 325
    • 4c Nuree Y. Singha R. Ghosh M. Roy P. Ray JK. Tetrahedron Lett. 2016; 57: 1479
    • 4d McCallum T. Barriault L. J. Org. Chem. 2015; 80: 2874
    • 4e Kocz R. Roestamadji J. Mobashery S. J. Org. Chem. 1994; 59: 2913
    • 4f Pri-Bar I. Alper H. J. Org. Chem. 1989; 54: 36
    • 4g Nangia A. Chandrasekaran S. J. Chem. Res., Synop. 1984; 100
    • 5a Huang P.-Q. Huang Y.-H. Geng H. Ye J.-L. Sci. Rep. 2016; 6: 28801
    • 5b Huang P.-Q. Huang Y.-H. Xiao K.-J. J. Org. Chem. 2016; 81: 9020
    • 5c Huang P.-Q. Huang Y.-H. Xiao K.-J. Wang Y. Xia X.-E. J. Org. Chem. 2015; 80: 2861
    • 5d Cyr P. Regnier S. Bechara WS. Charette AB. Org. Lett. 2015; 17: 3386
    • 5e Pelletier G. Bechara WS. Charette AB. J. Am. Chem. Soc. 2010; 132: 12817
    • 5f Barbe G. Charette AB. J. Am. Chem. Soc. 2008; 130: 18
    • 5g Charette AB. Grenon M. J. Org. Chem. 2003; 68: 5792
  • 6 See the Supporting Information for all experimental details and analytical data.
    • 7a King JF. Harding DR. K. Can. J. Chem. 1976; 54: 2652
    • 7b King J. Durst T. J. Am. Chem. Soc. 1964; 86: 287
    • 7c Opitz G. Adolph H. Angew. Chem., Int. Ed. Engl. 1962; 1: 113
  • 8 Mahajan D. Kumar V. Rana A. Meena CL. Sharma N. Thakur A. Tiwari L. Indian Patent 20171019482, 2017
  • 9 Bai J. Zambroń BK. Vogel P. Org. Lett. 2014; 16: 604
  • 10 Nareddy P. Jordan F. Brenner-Moyer SE. Szostak M. ACS Catal. 2016; 6: 4755
  • 11 Kim M. Chem. Commun. 2014; 50: 11303
  • 12 Pluth MD. Bergman RG. Raymond KN. A. J. Org. Chem. 2008; 73: 7132
  • 13 Strukil V. Chem. Commun. 2012; 48: 12100
  • 14 Ren W. Yamane M. J. Org. Chem. 2010; 75: 8410
  • 15 Kim JG. Jang DO. Synlett 2008; 2072
  • 16 Anderson MB. Ranasinghe MG. Palmer JT. Fuchs PL. J. Org. Chem. 1988; 53: 3125
  • 17 Cao H. McNamee L. Alper H. J. Org. Chem. 2008; 73: 3530
  • 18 Ben Halima T. J. Am. Chem. Soc. 2017; 139: 1311
  • 19 Mannel DS. Ahmed MS. Root TW. Stahl SS. J. Am. Chem. Soc. 2017; 139: 1690
  • 20 Qian C. Zhang X. Zhang Y. Shen Q. J. Organomet. Chem. 2010; 695: 747
  • 21 Leow D. Org. Lett. 2014; 16: 5812
  • 22 Lanigan RM. Starkov P. Sheppard TD. J. Org. Chem. 2013; 78: 4512