Synlett 2018; 29(12): 1607-1610
DOI: 10.1055/s-0037-1609755
letter
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Reduction of Trifluoromethyl Alkynyl Ketimines by Chiral Phosphoric Acid and Benzothiazoline

Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku 171-8588, Japan   Email: takahiko.akiyama@gakushuin.co.jp
,
Kensuke Takashima
Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku 171-8588, Japan   Email: takahiko.akiyama@gakushuin.co.jp
,
Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku 171-8588, Japan   Email: takahiko.akiyama@gakushuin.co.jp
› Author Affiliations
A Grant-in-Aid for Scientific Research on Innovative Areas ‘Advanced Transformation Organocatalysis’ from MEXT, Japan, a Grant-in-Aid for Scientific Research from JSPS (17H03060).
Further Information

Publication History

Received: 24 March 2018

Accepted after revision: 17 April 2018

Publication Date:
16 May 2018 (online)


Abstract

An enantioselective transfer hydrogenation reaction of alkynyl ketimine bearing a trifluoromethyl group was accomplished. Chemoselective reduction of ketimine was achieved by the combined use of chiral phosphoric acid and benzothiazoline to give α-trifluoromethyl propargylamine in good to high yields and with excellent enantioselectivity.

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 1a Mikami K. Itoh Y. Yamanaka M. Chem. Rev. 2004; 104: 1
    • 1b Böhm H.-J. Banner D. Bendels S. Kansy M. Kuhn B. Müller K. Obst-Sander U. Stahl M. ChemBioChem. 2004; 5: 637
    • 1c Muller K. Faeh C. Diederich F. Science 2007; 317: 1881
    • 1d Cahard D. Bizet V. Chem. Soc. Rev. 2014; 43: 135
    • 1e Wang J. Sánchez-Roselló M. Aceña JL. Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432

      For recent reviews, see:
    • 2a Dilman AD. Levin VV. Eur. J. Org. Chem. 2011; 831
    • 2b Liu X. Xu C. Wang M. Liu Q. Chem. Rev. 2015; 115: 683
    • 2c Yang X. Wu T. Phipps RJ. Toste FD. Chem. Rev. 2015; 115: 826
    • 3a Török B. Prakash GK. S. Adv. Synth. Catal. 2003; 345: 165
    • 3b Cheng G. Xia B. Wu Q. Lin X. RSC Adv. 2013; 3: 9820
    • 3c Cheng G. Wu Q. Shang Z. Liang X. Lin X. ChemCatChem 2014; 6: 2129

      For examples for nucleophilic addition of trifluoromethyl group, see:
    • 4a Prakash GK. S. Mandal M. Olah GA. Angew. Chem. Int. Ed. 2001; 40: 589
    • 4b Kawai H. Kusuda A. Nakamura S. Shiro M. Shibata N. Angew. Chem. Int. Ed. 2009; 48: 6324
    • 4c Bernardi L. Indrigo E. Pollicino S. Ricci A. Chem. Commun. 2012; 48: 1428

      For examples for nucleophilic addition of alkyl, alkynyl and aryl groups, see:
    • 5a Ruano JL. G. Alemán J. Catalán S. Marcos V. Monteagudo S. Parra A. del Pozo C. Fustero S. Angew. Chem. Int. Ed. 2008; 47: 7941
    • 5b Enders D. Gottfried K. Raabe G. Adv. Synth. Catal. 2010; 352: 3147
    • 5c Liu Y.-L. Shi T.-D. Zhou F. Zhao X.-L. Wang X. Zhou J. Org. Lett. 2011; 13: 3826
    • 5d Liu Y.-L. Zeng X.-P. Zhou J. Chem. Asian J. 2012; 7: 1759
    • 5e Morisaki K. Morimoto H. Ohshima T. Chem. Commun. 2017; 53: 6319

      For asymmetric reduction using transition-metal catalysts, see:
    • 6a Abe H. Amii H. Uneyama K. Org. Lett. 2001; 3: 313
    • 6b Chen M.-W. Duan Y. Chen Q.-A. Wang D.-S. Yu C.-B. Zhou Y.-G. Org. Lett. 2010; 12: 5075
    • 6c Dai X. Cahard D. Adv. Synth. Catal. 2014; 356: 1317
    • 6d Chen Z.-P. Chen M.-W. Shi L. Yu C.-B. Zhou Y.-G. Chem. Sci. 2015; 6: 3415
    • 6e Wu M. Cheng T. Ji M. Liu G. J. Org. Chem. 2015; 80: 3708
    • 6f Chen Z.-P. Hu S.-B. Zhou J. Zhou Y.-G. ACS Catal. 2015; 5: 6086
    • 6g Chen Z.-P. Hu S.-B. Chen M.-W. Zhou Y.-G. Org. Lett. 2016; 18: 2676
    • 6h Zhang K. An J. Su Y. Zhang J. Wang Z. Cheng T. Liu G. ACS Catal. 2016; 6: 6229

      For asymmetric reduction using organocatalysts, see:
    • 7a Demir AS. Sesenoglu Ö. Gerçek-Arkin Z. Tetrahedron: Asymmetry 2001; 12: 2309
    • 7b Gosselin F. O’Shea PD. Roy S. Reamer RA. Chen C. Volante RP. Org. Lett. 2005; 7: 355
    • 7c Henseler A. Kato M. Mori K. Akiyama T. Angew. Chem. Int. Ed. 2011; 50: 8180
    • 7d Genoni A. Benaglia M. Massolo E. Rossi S. Chem. Commun. 2013; 49: 8365

      For selected examples using chiral substrates, see:
    • 8a Bravo P. Cavicchio G. Crucianelli M. Markovsky AL. Volonterio A. Zanda M. Synlett 1996; 887
    • 8b Fustero S. Soler JG. Bartolomé A. Roselló MS. Org. Lett. 2003; 5: 2707
    • 8c Kawano Y. Mukaiyama T. Chem. Lett. 2005; 34: 894
    • 8d Liu Z.-J. Liu J.-T. Chem. Commun. 2008; 5233
    • 8e Fernández I. Valdivia V. Alcudia A. Chelouan A. Khiar N. Eur. J. Org. Chem. 2010; 1502
    • 8f Hernández-Rodríguez M. Castillo-Hernández T. Trejo-Huizar KE. Synthesis 2011; 2817
    • 8g Fustero S. Ibáñez I. Barrio P. Maestro MA. Catalán S. Org. Lett. 2013; 15: 832
    • 8h Pedroni J. Cramer N. J. Am. Chem. Soc. 2017; 139: 12398
    • 9a Sakai T. Yan F. Uneyama K. Synlett 1995; 753
    • 9b Sakai T. Yan F. Kashino S. Uneyama K. Tetrahedron 1996; 52: 233
    • 9c Ohkura H. Handa M. Katagiri T. Uneyama K. J. Org. Chem. 2002; 67: 2692
    • 9d Wu Y. Deng L. J. Am. Chem. Soc. 2012; 134: 14334
    • 9e Zhou X. Wu Y. Deng L. J. Am. Chem. Soc. 2016; 138: 12297

      For seminal papers of chiral phosphoric acid catalysis, see:
    • 10a Akiyama T. Itoh J. Yokota K. Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 10b Uraguchi D. Terada M. J. Am. Chem. Soc. 2004; 126: 5356

    • For reviews, see:
    • 10c Akiyama T. Chem. Rev. 2007; 107: 5744
    • 10d Terada M. Synthesis 2010; 1929
    • 10e Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2014; 114: 9047
    • 10f Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2017; 117: 10608
    • 10g Merad J. Lalli G. Bernadat G. Maury J. Masson G. Chem. Eur. J. 2018; 24: 3925
    • 11a Zhu C. Akiyama T. Org. Lett. 2009; 11: 4180
    • 11b Zhu C. Saito K. Yamanaka M. Akiyama T. Acc. Chem. Res. 2015; 48: 388

    • For the calculation of chiral phosphoric acid catalyzed transfer hydrogenation using benzothiazoline, see:
    • 11c Shibata Y. Yamanaka M. J. Org. Chem. 2013; 78: 3731
  • 12 Chen M.-W. Wu B. Chen Z.-P. Shi L. Zhou Y.-G. Org. Lett. 2016; 18: 4650
  • 13 General Procedure of Asymmetric Reduction Under a nitrogen atmosphere, a mixture of ketimine 1a (0.10 mmol), benzothiazoline (0.12 mmol, 1.2 equiv), 5 Å MS (50 mg, 100 wt%, activated), and chiral phosphoric acid (0.010 mmol, 10 mol%) in CH2Cl2 (1.0 mL) was heated to reflux for 24 h, and the reaction was monitored with TLC. After completion of the reaction, the reaction was stopped by adding saturated aqueous NaHCO3. The crude mixture was extracted with EtOAc (3×) and the combined organic extracts were washed with brine, dried with Na2SO4, and concentrated in vacuo. The residue was purified by preparative TLC to give the trifluoromethyl propargyl amine 4a (80%, 96% ee). (R)-(–)-4-Methoxy-N-(1,1,1-trifluoro-4-phenylbut-3-yn-2yl)aniline (4a, Table 1 Entry 1) Oil; yield 80%. 1H NMR (400 MHz, CDCl3): δ = 3.74 (1 H, br s), 3.77 (3 H, s), 4.73–4.78 (1 H, m), 6.78 (2 H, d, J = 9.2 Hz), 6.83 (2 H, d, J = 9.2 Hz), 7.30–7.45 (5 H, m). 13C NMR (100 MHz, CDCl3): δ = 52.1 (q, J = 33.8 Hz), 80.8 (q, J = 2.2 Hz), 86.2, 114.8, 116.9, 121.4, 123.7 (q, J = 280 Hz), 128.3, 128.5, 129.1, 131.9, 138.8, 154.1. 19F NMR (375 MHz, CDCl3): δ = 77.0 (3 F, d, J = 6.0 Hz).

    • For pioneering works on chiral phosphoric acid catalyzed transfer hydrogenation by use of Hantzsch ester as a hydrogen donor, see:
    • 14a Rueping M. Sugiono E. Azap C. Theissmann T. Bolte M. Org. Lett. 2005; 7: 3781
    • 14b Hoffmann S. Seayad A. List B. Angew. Chem. Int. Ed. 2005; 44: 7424
    • 14c Storer RI. Carrera DE. Ni Y. MacMillan DW. C. J. Am. Chem. Soc. 2006; 128: 84
    • 15a Sakamoto T. Mori K. Akiyama T. Org. Lett. 2012; 14: 3312
    • 15b Saito K. Akiyama T. Chem. Commun. 2012; 48: 4573
    • 15c Saito K. Horiguchi K. Shibata Y. Yamanaka M. Akiyama T. Chem. Eur. J. 2014; 20: 7616