Synlett 2018; 29(11): 1530-1536
DOI: 10.1055/s-0037-1609758
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed One-Pot Synthesis of Chalcogen-Benzothiazoles/Imidazo[1,2-a]pyridines with Sulfur/Selenium Powder and Aryl Boronic Acids

Tao Guo*
a   College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. of China   Email: taoguo@haut.edu.cn
,
Xu-Ning Wei
a   College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. of China   Email: taoguo@haut.edu.cn
,
Ying-Li Zhu
b   Clinical Pharmacology Laboratory, Zhengzhou University People’s Hospital, No. 7, Wei Wu Road, Zhengzhou, Henan 450002, P. R. of China
,
Huan Chen
c   China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, Henan 450001, P. R. of China
,
Shu-Lei Han*
c   China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, Henan 450001, P. R. of China
,
Yong-Cheng Ma*
b   Clinical Pharmacology Laboratory, Zhengzhou University People’s Hospital, No. 7, Wei Wu Road, Zhengzhou, Henan 450002, P. R. of China
› Author Affiliations
Financial support from National Natural Science Foundation of China (81502952), Open Project of Grain & Corn Engineering Technology Research Center in State Administration of Grain (No. 24400042), Colleges and Universities Key Research Program Foundation of Henan Province (No.17A150006), Science and Technology Foundation of Henan Province (No.172102310621, 182102210091) and Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology (No. 2015QNJH08) are greatly appreciated. The authors are also thankful to Jun Liu, Henan University of Technology, for her assistance for the NMR analysis.
Further Information

Publication History

Received: 23 February 2018

Accepted after revision: 15 April 2018

Publication Date:
16 May 2018 (online)


Abstract

An efficient and convenient copper-catalyzed oxidative chalcogenation of benzothiazoles and imidazo[1,2-a]pyridines with sulfur/selenium powder and aryl boronic acids was developed. This procedure allows access to a wide range of structurally diverse arylchalcogen-substituted benzothiazoles/imidazo[1,2-a]pyridines in good yields and with good functional group tolerance. A biological evaluation revealed that some of the obtained products exhibited in vitro antiproliferative activities on human-derived lung, stomach, esophageal, and breast cancer cell lines.

Supporting Information

 
  • References and Notes

    • 1a Dounay AB. Overman LE. Wrobleski AD. J. Am. Chem. Soc. 2005; 127: 10186
    • 1b Ellis GP. Lockhart IM. Chem. Heterocycl. Compd. 2007; 31: 1
    • 1c Sridharan V. Suryavanshi PA. Menéndez JC. Chem. Rev. 2011; 111: 7157
    • 1d Jia Z.-X. Luo Y.-C. Xu P.-F. Org. Lett. 2011; 13: 832
    • 1e Horton DA. Bourne GT. Smythe ML. Chem. Rev. 2003; 103: 893
    • 2a Hamdouchi C. de Blas J. del Prado M. Gruber J. Heinz BA. Vance L. J. Med. Chem. 1999; 42: 50
    • 2b Ali AR. El-Bendary ER. Ghaly MA. Shehata IA. Eur. J. Med. Chem. 2014; 75: 492
    • 2c Rival Y. Grassy G. Taudou A. Ecalle R. Eur. J. Med. Chem. 1991; 26: 13
    • 2d Vu CB. Bemis JE. Disch JS. Ng PY. Nunes JJ. Milne JC. Carney DP. Lynch AV. Lavu JJ. Smith S. Lambert PD. Gagne DJ. Schenk MR. Jirousek S. Olefsky JM. Perni RB. J. Med. Chem. 2009; 52: 1275
    • 2e Andreani A. Burnelli S. Granaiola M. Leoni A. Locatelli A. Morigi R. Rambaldi M. Varoli L. Calonghi N. Cappadone C. Farruggia G. Zini M. Stefanelli C. Masotti L. Radin NS. Shoemaker RH. J. Med. Chem. 2008; 51: 809
    • 2f Noël S. Cadet S. Gras E. Hureau C. Chem. Soc. Rev. 2013; 42: 7747
    • 2g Aiello S. Wells G. Stone EL. Kadri H. Bazzi R. Bell DR. Stevens MF. G. Matthews CS. Bradshaw TD. Westwell AD. J. Med. Chem. 2008; 51: 5135
    • 3a Furukawa S. Shono H. Mutai T. Araki K. ACS Appl. Mater. Interfaces 2014; 6: 16065
    • 3b Mutai T. Sawatani H. Shida T. Shono H. Araki K. J. Org. Chem. 2013; 78: 2482
    • 3c Douhal A. Amat-Guerri F. Acuna AU. Angew. Chem. Int. Ed. Engl. 1997; 36: 1514
    • 3d Wan J. Zheng C.-J. Fung M.-K. Liu X.-K. Lee C.-S. Zhang X.-H. J. Mater. Chem. 2012; 22: 4502
    • 4a Arisawa M. Toriyama F. Yamaguchi M. Tetrahedron Lett. 2011; 52: 2344
    • 4b He Z. Luo F. Li Y. Zhu G. Tetrahedron Lett. 2013; 54: 5907
    • 4c Gao Z. Zhu X. Zhang R. RSC Adv. 2014; 4: 19891
    • 4d Wu W. Ding Y. Xie P. Tang Q. Pittman CU. Zhou A. Tetrahedron 2017; 73: 2151
    • 4e Ding Y. Xie P. Zhu W. Xu B. Zhao W. Zhou A. RSC Adv. 2016; 85: 81932
    • 4f Huang X. Wang S. Li B. Wang X. Ge Z. Li R. RSC Adv. 2015; 5: 22654
    • 4g Wang D. Guo S. Zhang R. Lin S. Yan Z. RSC Adv. 2016; 6: 54377
    • 4h Li Z. Hong J. Zhou X. Tetrahedron 2011; 67: 3690
    • 4i Zhang J.-R. Zhan L.-Z. Wei L. Ning Y.-Y. Zhong X.-L. Lai J.-X. Xu L. Tang R.-Y. Adv. Synth. Catal. 2018; 360: 533
    • 5a Dai C. Xu Z. Huang F. Yu Z. Gao Y.-F. J. Org. Chem. 2012; 77: 4414
    • 5b Zhou A.-X. Liu X.-Y. Yang K. Zhao S.-C. Liang Y.-M. Org. Biomol. Chem. 2011; 9: 5456
    • 5c Ravi C. Mohan DC. Adimurthy S. Org. Lett. 2014; 16: 2978
    • 5d Popov L. Do H.-Q. Daugulis O. J. Org. Chem. 2009; 74: 8309
    • 5e Ravi C. Mohan DC. Adimurthy S. Org. Biomol. Chem. 2016; 14: 2282
    • 5f Ji X.-M. Zhou S.-J. Chen F. Zhang X.-G. Tang R.-Y. Synthesis 2015; 47: 659
    • 5g Hiebel M.-A. Berteina-Raboin S. Green Chem. 2015; 17: 937
  • 6 Rosario AR. Casola KK. Oliveira CE. S. Zeni G. Adv. Synth. Catal. 2013; 355: 2960
  • 7 Rafique J. Saba S. Rosário AR. Braga AL. Chem. Eur. J. 2016; 22: 11854
  • 8 Sun P. Yang D. Wei W. Jiang M. Wang Z. Zhang L. Zhang H. Zhang Z. Wang Y. Wang H. Green Chem. 2017; 19: 4785
    • 9a Xiao F. Chen S. Li C. Huang H. Deng G.-J. Adv. Synth. Catal. 2016; 358: 3881
    • 9b Luo D. Wu G. Yang H. Liu M. Gao W. Huang X. Chen J. Wu H. J. Org. Chem. 2016; 81: 4485
  • 10 Ravi C. Reddy NN. K. Pappula V. Samanta S. Adimurthy S. J. Org. Chem. 2016; 81: 9964
  • 11 Gao C. Wu G. Min L. Liu M. Gao W. Ding J. Chen J. Huang X. Wu H. J. Org. Chem. 2017; 82: 250
  • 12 Zhu W. Ding Y. Bian Z. Xie P. Xu B. Tang Q. Wu W. Zhou A. Adv. Synth. Catal. 2017; 359: 2215
  • 13 Guo T. Wei X.-N. Wang H.-Y. Zhu Y.-L. Zhao Y.-H. Ma Y.-C. Org. Biomol. Chem. 2017; 15: 9455
    • 14a Stein AL. Alves D. Rocha JT. Nogueira CW. Zeni G. Org. Lett. 2008; 10: 4983
    • 14b Guo T. Wang H. Synlett 2017; 28: 1843
    • 15a Zhang W. Zeng Q. Zhang X. Tian Y. Yue Y. Guo Y. Wang Z. J. Org. Chem. 2011; 76: 4741
    • 15b Yao L. Zhou Q. Han W. Wei S. Eur. J. Org. Chem. 2012; 6856
    • 15c Huang J. Chan J. Chen Y. Borths CJ. Baucom KD. Larsen RD. Faul MM. J. Am. Chem. Soc. 2010; 132: 3674
    • 16a Yu J.-T. Guo H. Yi Y. Fei H. Jiang Y. Adv. Synth. Catal. 2014; 356: 749
    • 16b Chen C. Xie Y. Chu L. Wang R.-W. Zhang X. Qing F.-L. Angew. Chem. Int. Ed. 2012; 51: 2492
  • 17 General procedure: DMF (1 mL) was added into a flask charged with benzothiazole (1; 0.25 mmol), S8 or Se (0.75 mmol), aryl boronic acid (2; 0.5 mmol), CuI (0.05 mmol), phen (0.05 mmol), Cs2CO3 (0.5 mmol), and Ag2CO3 (0.5 mmol). The mixture was stirred at 130 °C in air for 10 h. Then, the reaction was cooled to room temperature, diluted with ethyl acetate (20 mL) and washed with H2O (10 mL). The aqueous layer was extracted twice with ethyl acetate (5 mL) and the combined organic phase was dried over Na2SO4. After evaporation of the solvents, the residue was purified by flash column chromatography (silica gel, PE–EtOAc, 15: 1 to 10: 1) to afford the desired products.2-(Phenylthio)benzo[d]thiazole (3a): Purified by using a flash chromatography column (PE/EtOAc, 15: 1); yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.88 (d, J = 8.4 Hz, 1 H), 7.75–7.73 (m, 2 H), 7.64 (d, J = 8.0 Hz, 1 H), 7.52–7.46 (m, 3 H), 7.42–7.38 (m, 1 H), 7.28–7.24 (m, 1 H); 13C NMR (100 MHz, CDCl3): δ = 169.8, 154.1, 135.7, 135.5, 130.6, 130.1, 130.1, 126.3, 124.5, 122.1, 120.9; IR (KBr): 2922, 1581, 1456, 1425, 1309, 1236, 1080, 1007, 752 cm–1; HRMS m/z [M++H] calcd. for C13H10NS2 +: 244.02492; found: 244.024413-((4-Fluorophenyl)thio)-2-phenylimidazo[1,2-a]pyridine (5a): Purified by using a flash chromatography column (PE/EtOAc, 5:1); white solid; mp 128–130 °C. 1H NMR (500 MHz, CDCl3): δ = 8.27 (d, J = 7.0 Hz, 1 H), 8.20 (d, J = 8.0 Hz, 2 H), 7.72 (d, J = 9.0 Hz, 1 H), 7.46–7.31 (m, 4 H), 6.99–6.86 (m, 5 H); 13C NMR (125 MHz, CDCl3): δ = 161.7 (d, J C–F = 244.9 Hz), 151.5, 147.2, 133.4, 130.2 (d, J C–F = 3.6 Hz), 128.8, 128.6, 128.5, 127.7 (d, J C–F = 7.8 Hz), 126.9, 124.5, 117.9, 116.7 (d, J C–F = 21.0 Hz), 113.3, 106.7; IR (KBr): 2924, 2852, 1489, 1346, 1219, 1080, 735 cm–1; HRMS: m/z [M++H] calcd. for C19H14FN2S+: 321.08562; found: 321.08527.