H. PARK, P. VERMA, K. HONG, J.-Q. YU* (THE SCRIPPS RESEARCH INSTITUTE, LA JOLLA, USA)

Controlling Pd(IV) Reductive Elimination Pathways Enables Pd(II)-Catalysed Enantioselective C(sp³)-H Fluorination

Nat. Chem. 2018, 10, 755-762.

Palladium-Catalyzed Enantioselective C(sp³)–H Fluorination

Significance: The presence of a C–F bond uniquely affects the physical and biological characteristics of molecules. The authors have developed a new direct method for synthesizing chiral organofluorines by palladium-catalyzed C(sp³)–H fluorination. Appropriate choice of a chiral transient directing group is key to the selective formation of the desired C(sp³)–F bond rather than the undesired C(sp³)–O bond.

SYNFACTS Contributors: Hisashi Yamamoto, Takahiro Sawano Synfacts 2018, 14(09), 0931 Published online: 20.08.2018 **DOI:** 10.1055/s-0037-1609920; **Reg-No.:** H09418SF

Comment: Several mechanistic studies indicated that the desired $C(sp^3)$ –H fluorination proceeds by an inner-sphere pathway, whereas the undesired $C(sp^3)$ –O formation occurs through an S_N2 -type mechanism.

Category

Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words

palladium catalysis

directing groups

fluorination

reductive elimination

inner-sphere pathway

931