
246

P. Raju et al. LetterSyn Open

SYNOPEN2 5 0 9 - 9 3 9 6
Georg Thieme Verlag  Stuttgart · New York
2018, 2, 246–250
letter
en
Synthesis of 2,3-Disubstituted Carbazoles, Benzo[c]carbazoles, 
and Phenanthrenes Through FeCl3-Mediated Cyclization of Triene 
Frameworks
Potharaju Raju 
Thiyagarajan Mageshwaran 
Bose Muthu Ramalingam 
Arasambattu K. Mohanakrishnan*  0000-0002-3758-4578

Department of Organic Chemistry, School of Chemical Scienc-
es, University of Madras, Guindy Campus, Chennai-600 025, 
Tamil Nadu, India
mohan_67@hotmail.com

N

EWG/Ar

EWG/Ar

SO2Ph

N

SO2Ph

EWG/Ar

EWG/Ar

FeCl3/DMF/DCE

N

SO2Ph

R1

R3
R2

reflux

EWG = CO2Et, CN

22 examples

38–82%

40–88%

OMe

R1

OMe

MeO

MeO

R1

R1 = H (62%)
R1 = OMe (65%)
Received: 11.07.2018
Accepted after revision: 02.08.2018
Published online: 27.08.2018
DOI: 10.1055/s-0037-1609936; Art ID: so-2018-d0042-l

License terms: 

Abstract A facile synthesis of 2,3-disubstituted carbazoles through
electrocyclization of 2,3-divinylindoles using FeCl3 in DMF at reflux is re-
ported. The methodology was found to be applicable for smooth trans-
formation of 3-aryl-2-vinylindole as well as 2-styrylbiphenyl into the re-
spective benzo[c]carbazole and phenanthrene.

Key words carbazoles, electrocyclization, Iron(III) chloride, 2,3-di-
vinylindole, benzocarbazole, phenanthrene

Over the years, our research group has exploited electro-
cyclization of 1-phenylsulfonyl-2,3-divinylindoles as a key
step for the syntheses of quinocarbazoles,1a staurosporine
aglycone,1b,1c and also for accessing a wide variety of substi-
tuted carbazoles.2 We have also accomplished a Lewis acid
mediated electrocyclization strategy for accessing calo-
thrixin B and its derivatives.3 In all these reports, the ther-
mal electrocyclization followed by aromatization of 2,3-di-
vinylindoles could be performed using 10 % Pd/C in xylenes
at reflux to give the respective carbazoles in good yields.
However, the inconsistent quality of 10 % Pd-C, difficulty in
the aromatization of intermediate dihydrocarbazole, cou-
pled with prolonged reaction time at elevated temperature,
makes this protocol unsuitable for performing the reaction
on a multi-gram scale. We sought to develop an alternative
procedure that avoids the use Pd/C and also overcomes the
disadvantages noted above. Hence, in a further continua-

tion of our work on the synthesis of carbazoles,1 – 3 we re-
port herein the synthesis of a wide variety of carbazole de-
rivatives 2 through FeCl3-mediated4,5 electrocyclization as a
key step. The synthesis of benzo[c]carbazoles 3 could also
be achieved from the respective 2-vinyl-3-arylindoles
(Scheme 1).

Scheme 1  Synthesis of carbazoles 2 and 3 using FeCl3-mediated cy-
clization

To realize this objective, the required 2,3-divinylindoles
1a – v were prepared (Scheme 2) from the respective phos-
phonate esters.6 As a representative case, thermal electro-
cyclization of 1a in the presence of anhydrous FeCl3 in an-
hydrous DMF at reflux for 6 h afforded 2-nitrophenyl carba-
zole 2a7 in 74 % yield (Scheme 3).

To our delight, FeCl3-mediated electrocyclization of a
wide variety of 2,3-divinylindoles could be smoothly per-
formed to afford the respective carbazoles.
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Scheme 3  FeCl3-mediated electrocyclization of divinylindole 1a

The structures of various types of divinylindoles em-
ployed and the resulting carbazoles obtained are presented
in Table 1. The reaction of 1-phenylsulfonyl-2,3-divinylin-
doles 1b – d with FeCl3 in anhydrous DMF at reflux afforded
carbazoles 2b – d in 71 – 78 % yields, respectively (entry 1).
The FeCl3-mediated elctrocyclization could be smoothly
performed with 2,3-divinylindoles 1e – k to afford the ex-
pected 4-methylcarbazoles 2e – k in good yields (entry 2).
However, the reaction was found to proceed slowly with
2,3-divinylindole 1 l/1 m, containing a phenyl or p-anisyl
unit, yielding the respective carbazole 2 l and 2 m in 43 %
and 38 % yields (entry 3). The isolation of compounds 2 l and
2 m in low yields confirms that the electron-donating na-
ture of the aryl unit present in 2,3-divinylindole 1 l or 1 m is
not conducive for the FeCl3-mediated electrocyclization re-
action. As expected, the 2,3-divinylindoles 1n – q, contain-
ing a cyanovinyl unit, upon reaction with 50 mol% FeCl3 in
DMF at reflux furnished the respective 3-cyano-2-(2′-nitro-
phenyl)carbazoles 2n – q in 78 – 82 % yields (entry 4). Under
identical conditions, the isomeric 3-(2′-nitrophenyl)-
vinylindoles 1r – v, containing 2-vinyl ester as well as a 2-vi-
nyl cyanide unit, could be smoothly transformed into the
appropriate carbazoles 2r – v (entries 5 and 6).

The synthesis of benzo[c]carbazole analogues employ-
ing the FeCl3-mediated cyclization was then initiated. Ac-
cordingly, Wittig – Horner reaction of phosphonate ester 46

with substituted benzaldehydes in the presence of NaH in
tetrahydrofuran (THF) at 0 °C for 3 h afforded 3-bromo-2-

arylindoles 5a and 5b. As expected, the Suzuki coupling of
bromo compound 5a/5b with aryl boronic acid using
Pd(PPh3)4 and Na2CO3 in 1,2-dimethoxyethane (DME) at re-
flux furnished 3-aryl-2-strylindoles 6a – d as colorless solids
in good yields. As expected, the reaction of 6a – d with 50
 mol% FeCl3 in anhydrous 1,2-dichloroethane (DCE) at room
temperature or at reflux furnished 2-aryl benzo[c]carba-
zoles 3a – d7 in good yields (Scheme 4).

Scheme 4  FeCl3-mediated cyclization of 3-aryl-2-vinylindoles 6a – d

Subsequently, 3-bromo-2-methylindole, upon benzylic
bromination followed by hydrolysis and MnO2 oxidation of
corresponding alcohol, led to 3-bromoindole-2-aldehyde 7.
The Suzuki coupling of bromo compound 7 with veratryl
boronic acid using Pd(PPh3)4 in the presence of K3PO4 in
DME reflux afforded 2-formyl-3-arylindole 8 as a colorless
solid in 87 % yield. Indole aldehyde 8, upon Wittig reaction
with (carbethoxymethylene)triphenylphosphorane in

Scheme 2  List of 2,3-divinylindoles 1a – v
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anhydrous CH2Cl2 at room temperature, led to 3-veratryl-2-
vinylindole 9 in 93 % yield. The 2-vinyl ester 9, upon cycliza-
tion using 50 mol% FeCl3 in anhydrous 1,2-DCE reflux, fur-
nished benzo[c]carbazole 10 in a moderate yield (Scheme

5). Attempts to improve the yield of the benzo[c]carbazole
10 either by increasing the number of equivalents of FeCl3
or by prolonging the reaction time was not found to be use-
ful.

Table 1  FeCl3-Mediated Electrocyclization of 1-Phenylsulfonyl-2,3-divinylindoles 1b – v

Entry 2,3-divinylindolea Carbazole Yield (%)b

1
1b/2b R1 = Cl, R2 = H
1c/2c R1 = F, R2 = H
1 d/2 d R1 = H, R2 = F

71
73
78

2

1e/2e R1, R2 = H
1f/2f R1 = Cl, R2 = H
1 g/2 g R1 = H, R2 = Cl
1 h/2 h R1 = F, R2 = H
1i/2i R1 = H, R2 = F
1j/2j R1 = F, R2 = Cl
1k/2k1 = Cl, R2 = F

78
75
76
78
73
71
70

3 1 l/2 l R1 = H
1 m/2 m R1 = OMe

43
38

4

1n/2n R1, R2 = H
1o/2o R1 = Cl, R2 = H
1 p/2 p R1 = F, R2 = H
1q/2q R1 = H, R2 = F

79
82
81
78

5 1r/2r R1 = H
1 s/2 s R1 = F

78
72

6
1 t/2 t R1, R2 = H
1 u/2 u R1 = Cl, R2 = H
1v/2v R1 = F, R2 = H

80
72
74

a Reactions were carried out using 1a – v (1 equiv), FeCl3 (0.5 – 2 equiv) in DMF (10 mL) at reflux for 3 – 12 h.
b Isolated yield by column chromatography.
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Scheme 5  FeCl3-mediated cyclization of 2-vinyl-3-veratrylindole 9

Next, the Wittig – Horner reaction of phosphonate ester
118 with 2-bromo-veratraldehyde 12 in the presence of
t-BuOK in toluene at reflux afforded vinyl compound 13. As
expected, the Suzuki coupling of 13 with boronic acids fur-
nished the required triene compounds 14a and 14b in 85 %
and 91 % yields. The triene frame work of 14a and 14b un-
derwent cyclization upon interaction with 50 mol% FeCl3 in
anhydrous 1,2-DCE at reflux to give 9-arylphenanthrenes
15a7 and 15b in 62 % and 65 % yields, respectively (Scheme
6).

In summary, we have achieved the syntheses of 2,3-
disubstituted carbazoles, benzo[c]carbazoles, and phenan-
threne derivatives by employing FeCl3-mediated cyclization
of the corresponding triene frameworks. For the first time,
the FeCl3-mediated cyclization of two vinylic carbons as
well as phenyl and vinylic carbons could be achieved in ac-
ceptable yields.
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