Synlett 2018; 29(12): 1611-1616
DOI: 10.1055/s-0037-1610028
letter
© Georg Thieme Verlag Stuttgart · New York

Green Synthesis of Haloformates from Olefins Using Formic Acid as Reactant, Protonic Acid, and Solvent

College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. of China   Email: wanglg@zjut.edu.cn   Email: hjzjut@zjut.edu.cn
,
Hualong Zhang
College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. of China   Email: wanglg@zjut.edu.cn   Email: hjzjut@zjut.edu.cn
,
Qin Yu
College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. of China   Email: wanglg@zjut.edu.cn   Email: hjzjut@zjut.edu.cn
,
Chun Feng
College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. of China   Email: wanglg@zjut.edu.cn   Email: hjzjut@zjut.edu.cn
,
Jun Hu*
College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. of China   Email: wanglg@zjut.edu.cn   Email: hjzjut@zjut.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 05 February 2018

Accepted after revision: 02 May 2018

Publication Date:
07 June 2018 (online)


Abstract

Bromoformates and iodoformates are successfully synthesized in high yields with regioselectivity and stereoselectivity by using ZnAl-BrO3 layered double hydroxides (LDHs) and KX (X = Br, I) in the presence of formic acid (HCOOH). The protocol exploits the versatile function of formic acid as solvent, nucleophilic reagent, and acidic medium simultaneously, simplifying the reaction and separation of the products.

Supporting Information

 
  • References and Notes

    • 2a Macharla AK. Nappunni RC. Nama N. Tetrahedron Lett. 2012; 53: 1401
    • 2b Phukan P. Chakraborty P. Kataki DJ. J. Org. Chem. 2006; 71: 7533
    • 2c Taber DF. Liang JL. J. Org. Chem. 2007; 72: 431
    • 2d Yeung YY. Gao X. Corey EJ. J. Am. Chem. Soc. 2006; 128: 9644
    • 3a Tripathy N. k. Georg G. I. 2004; 45: 5309
    • 3b Buynak JD. Mathew J. Rao MN. J. Chem. Soc., Chem. Commun. 1986; 12: 941
    • 3c Thiem J. Gerken MJ. Carbohydr. Chem. 1982; 1: 229
    • 3d Liang J. Moher ED. Moore RE. Hoard DW. J. Org. Chem. 2000; 65: 3143
    • 4a Anderson JC. Headley C. Stapleton PD. Taylor PW. Tetrahedron 2005; 61: 7703
    • 4b Li L. Chan TH. Org. Lett. 2001; 3: 739
    • 4c Larivée A. Unger JB. Thomas M. Wirtz C. Dubost C. Handa S. Fürstner A. Angew. Chem. Int. Ed. 2011; 50: 304
  • 5 Kolb HC. Sharpless KB. Tetrahedron 1992; 48: 10515
    • 6a Hamm S. Henning L. Findeisen M. Müller D. Welzel P. Tetrahedron 2000; 56: 1345
    • 6b Suginome H. Wang JB. Bull. Chem. Soc. Jpn. 1989; 62: 193
    • 7a Glukhovtsev MN. Pross A. Radom L. J. Am. Chem. Soc. 1995; 117: 9012
    • 7b Xiao MY. Ren DD. Xu LB. Li SS. Yu LP. Xiao J. Org. Lett. 2017; 19: 5724
    • 7c Ortiz R. Herrera RP. Molecules 2017; 22: 574
    • 7d Zhu Y. Mei HB. Han JL. Soloshonok VA. Zhou J. Pan Y. J. Org. Chem. 2017; 82: 13663
    • 7e Miralles N. Gomez JE. Kleij AW. Fernandez E. Org. Lett. 2017; 19: 6096
  • 8 De Souza AV. A. Mendonca GF. Bernini RB. De Mattos MC. S. J. Braz. Chem. Soc. 2007; 18: 1575
  • 9 Dalton DR. Smith RC. J. Jones DG. Tetrahedron 1970; 26: 575
  • 10 Saikia I. Krishna KR. Phukan P. Tetrahedron Lett. 2012; 53: 758
  • 11 Podgoršek A. Eissen M. Fleckenstein J. Stavber S. Zupan M. Iskra J. Green Chem. 2009; 11: 120
  • 12 Mameda N. Peraka S. Macharla AK. Marri MR. Kodumuri S. Nama N. Tetrahedron Lett. 2014; 55: 3926
  • 13 Chevella D. Mameda N. Macharla AK. Peraka S. Marri MR. Kodumuri S. Nama N. Synth. Commun. 2016; 13: 1133
    • 14a Niizato H. Ueno Y. Takemura S. Chem. Pharm. Bull. 1972; 20: 2707
    • 14b Ueno Y. Yamasaki A. Terauchi H. Takemura S. Chem. Pharm. Bull. 1974; 22: 1646
    • 15a Ganboa I. Palomo C. Synth. Commun. 1983; 13: 941
    • 15b Li XK. Ho B. Lim DS. W. Zhang YG. Green Chem. 2017; 19: 914
    • 15c Zhang F. Lu Q. Yue XX. Zuo BQ. Qin MD. Li F. Kaplan DL. Zhang XG. Acta Biomater. 2015; 12: 139
    • 15d Schettini AR. A. Peres RC. D. Soares BG. Synth. Met. 2009; 159: 1491
    • 15e Schueren LV. D. Steyaert I. Schoenmaker BD. Clerck KD. Carbohydr. Polym. 2012; 88: 1221
    • 16a Kozar LG. Clark RD. Heathcock CH. J. Org. Chem. 1977; 42: 1386
    • 16b Kleinfelter DC. Schleyer P. vR. Org. Synth. 1962; 42: 79
    • 16c Kaulen J. Angew. Chem. Int. Ed. Engl. 1987; 26: 773
    • 16d Wang L. Floreancig PE. Org. Lett. 2004; 6: 4207
    • 17a Wang LG. Zheng FX. Jiang CX. Ni ZM. J. Chin. Ceram. Soc. 2015; 43: 672
    • 17b Yang MS. Gu LH. Yang B. Wang L. Sun ZY. Zheng JY. Appl. Surf. Sci. 2017; 426: 185
    • 17c Djebbi MA. Elabed A. Bouaziz Z. Sadiki M. Elabed S. Namour P. Jaffrezic-Renault N. Amare AB. H. Int. J. Pharm. 2016; 515: 422
    • 18a Veeraiah T. Sondu S. Int. J. Chem. Sci. 2007; 5: 911
    • 18b Imbri D. Netz N. Kucukdisli M. Kammer LM. Jung P. Kretzschmann A. Opatz T. J. Org. Chem. 2014; 79: 11750
    • 18c Karama U. Mahfouz R. Al-Othman Z. Warad I. Almansour A. Synth. Commun. 2013; 43: 893
    • 18d Solladié N. Gross M. Tetrahedron Lett. 1999; 40: 3359
    • 19a Song S. Huang XQ. Liang YF. Tang CH. Li XW. Jiao N. Green Chem. 2015; 17: 2727
    • 19b Dong JJ. Fernández-Fueyo E. Li JB. Guo Z. Renirie R. Wever R. Hollmann F. Green Chem. 2017; 53: 6207
    • 19c Lodh RS. Borah AJ. Phukan P. Indian. J. Chem. 2014; 53B, 1425
    • 20a Adimurthy S. Ghosh S. Patoliya PU. Ramachandraiah G. Agrawal M. Gandhi MR. Upadhyay SC. Ghosh PK. Ranu BC. Green Chem. 2008; 10: 232
    • 20b Cortes CE. S. Faria RB. Inorg. Chem. 2004; 43: 1395
    • 21a Zheng CY. Slebocka-Tilk H. Nagoraski RW. Alvarado L. Brown RS. J. Org. Chem. 1993; 58: 2122
    • 21b Heasley VL. Shellhamer DF. Iskilian JA. Street DL. J. Org. Chem. 1978; 43: 3139
    • 21c Vardhan HB. Bach RD. J. Org. Chem. 1992; 57: 4948
    • 21d Slebocka-Tilk H. Nagorski SM. R. W. Brown PT. R. S. McDonald R. J. Am. Chem. Soc. 1995; 117: 8769
    • 21e Chiappe C. Rubertis AD. Jaber A. Lenoir D. Wattenbach C. Pomelli CS. J. Org. Chem. 2002; 67: 7066
    • 21f McClendon E. Omollo AO. Valente EJ. Hamme AT. Tetrahedron Lett. 2009; 50: 533
  • 22 Representative Procedure for the Synthesis of Bromoformate 2f Substrate (1f, 324.4 mg, 2 mmol), KBr (190.4 mg, 1.6 mmol), formic acid (10 mL) were added to a 50 mL three-necked flask, and KBr was absolutely dissolved in the mixture with proper stirring at room temperature. After ZnAl-BrO3 -LDHs (0.8 g) was added to the mixture, the reaction system was stirred at 40 °C with use of a reflux condenser in a water bath until the substrate completely disappeared (monitored by TLC). The molecular bromine was treated with sodium bisulfite solution right away. The solid phase ZnAl-BrO3 -LDHs was removed by centrifugation. Furthermore, the dichloromethane (3 × 5 mL) used for washing the ZnAl-BrO3 -LDHs was merged into the liquid mixture after centrifugation. Then, the products were extracted into the organic phase with dichloromethane (3 × 10 mL) and H2O (30 mL). The organic phase was dried with sodium sulfate and concentrated in vacuum. The crude product was purified by column chromatography on silica gel. 2-Bromo-1-(4-acetoxylphenyl)ethyl formate (2f) Yield: 493.8 mg, 86%. Colorless oil. 1H NMR (500 MHz, CDCl3): δ = 8.15 (s, 1 H), 7.42–7.39 (m, 2 H), 7.14–7.12 (m, 2 H), 6.11 (dd, J = 8.3, 4.5 Hz, 1 H), 3.68 (dd, J = 11.0, 8.4 Hz, 1 H), 3.61 (dd, J = 11.0, 4.5 Hz, 1 H), 2.31 (s, 3 H) ppm. 13C NMR (126 MHz, CDCl3): δ = 169.16, 159.52, 151.09, 134.49, 127.84, 122.00, 74.04, 33.51, 21.07 ppm. HRMS (ESI): m/z calcd for C11H11BrO4 [M + H]+: 286.9919; found: 286.9917.