Synthesis 2018; 50(18): 3708-3714
DOI: 10.1055/s-0037-1610123
paper
© Georg Thieme Verlag Stuttgart · New York

An Efficient and Ecofriendly Three-Component Reaction for the Rapid Synthesis of 2-Amino-4H-chromenes Catalyzed by a DABCO­-Based Ionic Liquid

Cheng-Bin Li
National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China   Email: xudazhen@nankai.edu.cn
,
Yu-Wei Li
National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China   Email: xudazhen@nankai.edu.cn
,
Da-Zhen Xu*
National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China   Email: xudazhen@nankai.edu.cn
› Author Affiliations
This work was financially supported by the National Natural Science Foundation of China (NSFC) (No. 21302101), and National Training Programs of Innovation and Entrepreneurship for Undergraduates (Nos. 201710055080, 201710055085). We also thank the Nankai University State Key Laboratory of Elemento-Organic Chemistry for support.
Further Information

Publication History

Received: 11 April 2018

Accepted after revision: 17 May 2018

Publication Date:
02 July 2018 (online)


Abstract

An efficient, economical, and green strategy for the construction of biologically relevant 2-amino-4H-chromene scaffolds via a tandem Knoevenagel–Pinner cyclization–Michael reaction has been successfully developed. In the presence of DABCO-based ionic liquids, two different 2-amino-4H-chromene derivatives, 2-amino-4-(indol-3-yl)-4H-chromenes and 2-amino-4-(pyrazol-4-yl)-4H-chromenes, were prepared in good to excellent yields (81–97%) within short reaction times under mild conditions. All the products are purified by simple crystallization. The catalyst could be recycled for at least five times.

Supporting Information

 
  • References

    • 1a Kumar D. Reddy VB. Sharad S. Dube U. Kapur S. Eur. J. Med. Chem. 2009; 44: 3805
    • 1b Kemnitzer W. Drewe J. Jiang S. Zhang H. Crogan-Grundy C. Labreque D. Bubenick M. Attardo G. Denis R. Lamothe S. Gourdeau H. Tseng B. Kasibhatla S. Cai SX. J. Med. Chem. 2008; 51: 417
    • 1c Sabry NM. Mohamed HM. Khattab ES. A. E. H. Motlaq SS. El-Agrody AM. Eur. J. Med. Chem. 2011; 46: 765
    • 2a Corradini E. Foglia P. Giansanti P. Gubbiotti R. Samperi R. Laganà A. Nat. Prod. Res. 2011; 25: 469
    • 2b Patil RB. Sawant SD. Thombare PA. Int. J. PharmTech Res. 2012; 4: 375 ; http://sphinxsai.com
    • 2c Khadem S. Marles RJ. Molecules 2012; 17: 191
  • 3 Schweizer EE. Meeder-Nycz D. The Chemistry of Heterocyclic Compounds, Chromenes, Chromanes, and Chromones . Ellis GP. John Wiley; New York: 2007. Chap. II, 11–141
  • 4 Hafez EA. Elnagdi MH. Elagamey AG. A. El-Taweel FM. A. A. Heterocycles 1987; 26: 903
    • 5a Andreani LL. Lapi E. Bull. Chim. Farm. 1960; 99: 583
    • 5b Bonsignore L. Loy G. Secci D. Calignano A. Eur. J. Med. Chem. 1993; 28: 517
    • 5c Shanthi G. Perumal PT. Rao U. Sehgal PK. Indian J. Chem., Sect. B 2009; 48: 1319
    • 6a Deng J. Sanchez T. Neamati N. Briggs JM. J. Med. Chem. 2006; 49: 1684
    • 6b Contractor R. Samudio IJ. Estrov Z. Harris D. McCubrey JA. Safe SH. Andreeff M. Konopleva M. Cancer Res. 2005; 65: 2890
    • 7a McDonald E. Jones K. Brough PA. Drysdale MJ. Workman P. Curr. Top. Med. Chem. 2006; 6: 1193
    • 7b Elguero J. Goya P. Jagerovic N. Silva AM. S. Targets Heterocycl. Syst. 2002; 6: 52
    • 7c Jyothi M. Merugu R. Int. J. PharmTech Res. 2015; 8: 80 ; http://sphinxsai.com
  • 8 Kausar N. Al Masum A. Islam MM. Das AR. Mol. Divers. 2017; 21: 325
    • 9a Singh N. Allam BK. Raghuvanshi DS. Singh KN. Adv. Synth. Catal. 2013; 355: 1840
    • 9b Rajesh UC. Wang J. Prescott S. Tsuzuki T. Rawat DS. ACS Sustainable Chem. Eng. 2015; 3: 9
    • 9c Rai P. Srivastava M. Yadav S. Singh J. Singh J. Catal. Lett. 2015; 145: 2020
    • 9d Ghosh PP. Das AR. J. Org. Chem. 2013; 78: 6170
    • 9e Thakur A. Reddy PL. Tripathi M. Rawat DS. New J. Chem. 2015; 39: 6253
    • 9f Chen W. Cai Y. Fu X. Liu X. Lin L. Feng X. Org. Lett. 2011; 13: 4910
    • 9g Khalafi-Nezhad A. Nourisefat M. Panahi F. Org. Biomol. Chem. 2015; 13: 7772
    • 9h Ganesan A. Kothandapani J. Nanubolu JB. Ganesan SS. RSC Adv. 2015; 5: 28597
    • 9i Shanthi G. Perumal PT. Tetrahedron Lett. 2007; 48: 6785
    • 9j Rajesh UC. Kholiya R. Thakur A. Rawat DS. Tetrahedron Lett. 2015; 56: 1790
    • 10a Kumaravel K. Vasuki G. Green Chem. 2009; 11: 1945
    • 10b Elinson MN. Nasybullin RF. Ryzhkov FV. Egorov MP. C. R. Chim. 2014; 17: 437
    • 10c Li M. Gu Y. Adv. Synth. Catal. 2012; 354: 2484
  • 11 Wessjohann LA. Rivera DG. Vercillo OE. Chem. Rev. 2009; 109: 796
  • 12 de Graaff C. Ruijter E. Orru RV. A. Chem. Soc. Rev. 2012; 41: 3969
    • 13a Armstrong RW. Combs AP. Tempest PA. Brown SD. Keating TA. Acc. Chem. Res. 1996; 29: 123
    • 13b Toure BB. Hall DG. Chem. Rev. 2009; 109: 4439
    • 14a Yang C. Liu PZ. Xu DZ. ChemistrySelect 2017; 2: 1232
    • 14b Liu T. Li CB. Yu YQ. Xu DZ. ChemistrySelect 2017; 2: 2917
    • 14c Huang LS. Hu X. Yu YQ. Xu DZ. ChemistrySelect 2017; 2: 11790
    • 14d Li MM. Duan CS. Yu YQ. Xu DZ. Dyes Pigm. 2018; 150: 202
    • 14e Liu T. Lai YH. Yu YQ. Xu DZ. New J. Chem. 2018; 42: 1046
    • 14f Yu YQ. Xu DZ. Synthesis 2015; 47: 1869
    • 14g Yu YQ. Xu DZ. RSC Adv. 2015; 5: 28857
    • 14h Yu YQ. Xu DZ. Tetrahedron 2015; 71: 2853
    • 14i Song LL. Yang C. Yu YQ. Xu DZ. Synthesis 2017; 49: 1641
    • 15a Masesane IB. Desta ZY. Beilstein J. Org. Chem. 2012; 8: 2166
    • 15b Han YF. Xia M. Curr. Org. Chem. 2010; 14: 379
  • 16 He Y. Hu R. Tong R. Li F. Shi J. Zhang M. Molecules 2014; 19: 19253
  • 17 Lakshmi NV. Kiruthika SE. Perumal PT. Synlett 2011; 1389
  • 18 Tajbakhsh M. Heidary M. Hosseinzadeh R. Amiri MA. Tetrahedron Lett. 2016; 57: 141