Synthesis 2018; 50(14): 2761-2767
DOI: 10.1055/s-0037-1610137
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Imidazo[1,5-a]quinolines via Metal-Free Oxidative Amination of sp3 C–H Bonds

Huanhuan Liu
a   School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. of China   Email: chenma@sdu.edu.cn
,
Xinfeng Wang
a   School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. of China   Email: chenma@sdu.edu.cn
,
Chen Ma*
a   School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. of China   Email: chenma@sdu.edu.cn
b   State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. of China
› Author Affiliations
We are grateful to the National Science Foundation of China (No. 21572117) and the State Key Laboratory of Natural and Biomimetic Drugs of Peking University (No. K20140208) for financial support of this research.
Further Information

Publication History

Received: 08 March 2018

Accepted after revision: 07 April 2018

Publication Date:
29 May 2018 (online)


Abstract

A novel oxidative amination of sp3 C–H bonds was developed for the efficient synthesis of imidazo[1,5-a]quinolines from readily available α-amino acids and (2-azaaryl)methanes. This domino protocol, which was established in a TBAI-TBHP oxidation system, includes transition-metal-free decarboxylation and intramolecular cyclization. This method represented a new avenue for the synthesis of N-heterocycles using 2-methylquinolines as the synthon of quinoline-2-carbaldehydes.

Supporting Information

 
  • References

    • 1a Malamas MS. Ni Y.-K. Erdei J. Stange H. Schindler R. Lankau H.-J. Grunwald C. Fan KY. Parris K. Langen B. Egerland U. Hage T. Marquis KL. Grauer S. Brennan J. Navarra R. Graf R. Harrison BL. Robichaud A. Kronbach T. Pangalos MN. Hoefgen N. Brandon NJ. J. Med. Chem. 2011; 54: 7621
    • 1b Hranjec M. Kralj M. Piantanida I. Sedic M. Suman L. Pavelic K. Karminski-Zamola G. J. Med. Chem. 2007; 50: 5696
  • 2 Cappelli A. Anzini M. Castriconi F. Grisci G. Paolino M. Braile C. Valenti S. Giuliani G. Vomero S. Di Capua A. Betti L. Giannaccini G. Lucacchini A. Ghelardini C. Di Cesare Mannelli L. Frosini M. Ricci L. Giorgi G. Mascia MP. Biggio G. J. Med. Chem. 2016; 59: 3353
  • 3 Cappelli A. Giuliani G. Anzini M. Riitano D. Giorgi G. Vomero S. Bioorg. Med. Chem. 2008; 16: 6850
  • 4 Wang X. Chen Z. Duan W. Song C. Ma Y. Tetrahedron: Asymmetry 2017; 28: 783
    • 5a Bower JD. Ramage GR. J. Chem. Soc. 1955; 2834
    • 5b Pelletier G. Charette AB. Org. Lett. 2013; 15: 2290
    • 5c Shibahara F. Kitagawa A. Yamaguchi E. Murai T. Org. Lett. 2006; 8: 5621
    • 5d Langry KC. J. Org. Chem. 1991; 56: 2400
  • 6 Wang Q. Zhang S. Guo F. Zhang B. Hu P. Wang Z. J. Org. Chem. 2012; 77: 11161
  • 7 Li M. Xie Y. Ye Y. Zou Y. Jiang H. Zeng W. Org. Lett. 2014; 16: 6232
    • 8a Wang H. Xu W. Wang Z. Yu L. Xu K. J. Org. Chem. 2015; 80: 2431
    • 8b Wang H. Xu W. Xin L. Liu W. Wang Z. Xu K. J. Org. Chem. 2016; 81: 3681
  • 9 Yan Y. Zhang Y. Zha Z. Wang Z. Org. Lett. 2013; 15: 2274
  • 10 Gong L. Xing L.-J. Xu T. Zhu X.-P. Zhou W. Kang N. Wang B. Org. Biomol. Chem. 2014; 12: 6557
  • 11 Li Z. Wu S.-S. Luo Z.-G. Liu W.-K. Feng C.-T. Ma S.-T. J. Org. Chem. 2016; 81: 4386
  • 12 Tan Z. Zhao H. Zhou C. Jiang H. Zhang M. J. Org. Chem. 2016; 81: 9939
    • 13a Wang F.-F. Luo C.-P. Deng G. Yang L. Green Chem. 2014; 16: 2428
    • 13b Li Q. Huang Y. Chen T. Zhou Y. Xu Q. Yin S.-F. Han L.-B. Org. Lett. 2014; 16: 3672
    • 13c Xiao F. Chen S. Chen Y. Huang H. Deng G.-J. Chem. Commun. 2015; 51: 652
    • 13d Wang G.-W. Li S.-X. Wu Q.-X. Yang S.-D. Org. Chem. Front. 2015; 2: 569
    • 13e Liu H. Zhai T. Ding S. Hou Y. Zhang X. Feng L. Ma C. Org. Chem. Front. 2016; 3: 1096
  • 14 Liu H. Duan T. Zhang Z. Xie C. Ma C. Org. Lett. 2015; 17: 2932
  • 15 Justyna K. Chrostowska A. Lesniak S. Darrigan C. Baylere P. Khayar S. Wentrup C. J. Anal. Appl. Pyrolysis 2017; 125: 335