Synlett 2018; 29(12): 1649-1653
DOI: 10.1055/s-0037-1610171
letter
© Georg Thieme Verlag Stuttgart · New York

Vinylogous Blaise Reaction: Conceptually New Synthesis of Pyridin-2-ones

H. Surya Prakash Rao*
Department of Chemistry, Pondicherry University, Pondicherry-605 014, India
,
Nandurka Muthanna
Department of Chemistry, Pondicherry University, Pondicherry-605 014, India
,
Ashiq Hussain Padder
Department of Chemistry, Pondicherry University, Pondicherry-605 014, India
› Author Affiliations
H.S.P.R. thanks the University Grants Commission (UGC), the Major Research Project (MRP) Special Assistance Program (SAP), and the ­Department of Science and Technology Fund for Improvement of S&T Infrastructure in Universities and Higher Educational Institutions (DST-FIST) programs. N.M. thanks the UGC for a fellowship. A.H.P. thanks Pondicherry University for a fellowship. The authors thank the Central Instrumentation Facility (CIF) and Department of Chemistry for the instrumentation facilities.
Further Information

Publication History

Received: 12 April 2018

Accepted after revision: 13 May 2018

Publication Date:
19 June 2018 (online)


Abstract

A conceptually new synthesis of pyridine rings by a [C4 + CN] assembly has been developed by applying a vinylogous version of the classic Blaise reaction. The zinc-mediated reaction of (het)aryl or alkyl nitriles with ethyl-4-bromocrotonate provided a variety of C(6)-substituted pyridin-2-ones in a single-step.

Supporting Information

 
  • References

  • 1 Murugan R. Scriven EF. V. In Pyridines: From Lab to Production . Scriven EF. V. Academic Press; Oxford: 2013. Chap. 1
  • 2 Anderson T. Justus Liebigs Ann. Chem. 1846; 60: 86
  • 3 Pozharskiĭ AF. Soldatenkov AT. Katritzky AR. Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry and Applications . Wiley; Chichester: 2011. 2nd ed
  • 4 Hamama WS. Waly M. El-Hawary I. Zoorob HH. Synth. Commun. 2014; 44: 1730
    • 6a Wall ME. Wani MC. Cook CE. Palmer KH. McPhail AT. Sim GA. J. Am. Chem. Soc. 1966; 88: 3888
    • 6b Ljungman M. Hanawalt PC. Carcinogenesis 1996; 17: 31
    • 6c Efferth T. Fu Y.-J. Zu Y.-G. Schwarz G. Konkimalla VS. B. Wink M. Curr. Med. Chem. 2007; 14: 2024
    • 7a Aly R. Katz HI. Kempers SE. Lookingbill DP. Lowe N. Menter A. Morman M. Savin RC. Wortzman M. Int. J. Dermatol. 2003; 42 (01) : 19
    • 7b Niewerth M. Kunze D. Seibold M. Schaller M. Korting HC. Hube B. Antimicrob. Agents Chemother. 2003; 47: 1805
  • 8 Tang X. Liu P. Li R. Jing Q. Lv J. Liu L. Liu Y. Basic Clin. Pharmacol. Toxicol. 2015; 117: 186
    • 9a Litvinov VP. Krivokolysko SG. Dyachenko VD. Chem. Heterocycl. Compd. (Engl. Transl.) 1999; 35: 509
    • 9b Mijin D. Ž. Ušćumlić GS. Valentić NV. Marinković AD. Hem. Ind. 2011; 65: 517 ;
    • 10a Jessen HJ. Gademann K. Nat. Prod. Rep. 2010; 27: 1168
    • 10b Wang S. Cao L. Shi H. Dong Y. Sun J. Yuefei H. Chem. Pharm. Bull. 2005; 53: 67
  • 11 Rawson JM. Winpenny RE. P. Coord. Chem. Rev. 1995; 139: 313
  • 13 Keller PA. Abdel-Hamid MK. Abdel-Megeed AM. Pyridines: From Lab to Production . Scriven EF. V. Academic Press; Oxford: ; Chap. 2; 15
  • 14 Kröhnke F. Zecher W. Curtze J. Drechsler D. Pfleghar K. Schnalke KE. Weis W. Angew. Chem. Int. Ed. Engl. 1962; 1: 626
    • 15a Guareschi I. Mem. Reale Accad. Sci. Torino II 1896; 46: 7,11,25
    • 15b Guareschi I. Atti Accad. Sci. Torino 1900; 36: 443
    • 15c Baron H. Remfry FG. P. Thorpe JF. J. Chem. Soc. Trans 1904; 85: 1726 ;
  • 16 Hantzsch A. Justus Liebigs Ann. Chem. 1882; 215: 1
  • 17 Chichibabin AE. Russ. J. Phys. Chem. 1905; 37: 1229
  • 18 Petrenko-Kritschenko P. J. Prakt. Chem. 1912; 85: 1
    • 19a Blaise EE. C. R. Hebd. Seances Acad. Sci. 1901; 132: 478
    • 19b Blaise EE. C. R. Hebd. Seances Acad. Sci. 1901; 132: 987
    • 19c Blaise EE. Bull. Soc. Chim. Fr. 1906; 35: 589
    • 19d For reviews, see: Rao HS. P. Rafi S. Padmavathy K. Tetrahedron 2008; 64: 8037
    • 19e Kim JH. Ko YO. Bouffard J. Lee S.-g. Chem. Soc. Rev. 2015; 44: 2489
  • 20 Rao HS. P. Muthanna N. Eur. J. Org. Chem. 2015; 1525
  • 21 Rao HS. P. Muthanna N. Synlett. 2016; 27: 2014
  • 22 Rao HS. P. Rafi S. Padmavathy K. Lett. Org. Chem. 2008; 5: 527
  • 23 Detailed information on the optimization of the reaction conditions is given in Table 1 of the Supplementary Information.
  • 24 Kröhnke F. Zecher W. Angew. Chem. 1962; 74: 811
  • 25 Smith CL. Hirschhäuser C. Malcolm GK. Nasrallah DJ. Gallagher T. Synlett. 2014; 25: 1904
  • 28 Pyridin-2-ones 13am; General Procedure A solution of TMSCl (3 mol%) in anhyd 1,4-dioxane (1 mL) was added to a suspension of Zn dust (2 equiv) in anhyd 1,4-dioxane (3 mL), and the resulting suspension was refluxed with vigorous stirring for 25 min. The appropriate nitrile (2 mmol) in dry 1,4-dioxane (1 mL) and ethyl (E)-4-bromobut-2-enoate (12; 2 equiv) in dry 1,4-dioxane (1 mL) were simultaneously added dropwise to the refluxing suspension during 10 min by using two syringes. The resulting light-green mixture was refluxed until all the starting material was consumed and the color changed to brown (TLC; 3–6 h). The mixture was cooled to r.t. then centrifuged (700 rpm). The upper solution was decanted and the remaining solid was washed with 1,4-dioxane (4 × 1 mL). The 1,4-dioxane solutions were combined and concentrated to about 1 mL under reduced pressure in a rotatory evaporator. The residue was treated with 50% aq K2CO3 until the pH reached 13 (~5 mL). The resulting mixture was stirred for 30 min at r.t. (30 °C) then diluted with CH2Cl2 (10 mL) and H2O (10 mL). The organic layer was separated, washed sequentially with H2O (2 × 10 mL) and brine (10 mL), dried (Na2SO4), and evaporated under reduced pressure to give a crude product that was purified by column chromatography [silica gel (100–200 mesh); 15–60% EtOAc–hexane]. 6-Phenylpyridin-2(1H)-one (13a) By following the general procedure, the reaction of PhCN (5a; 201 mg, 1.94 mmol) with crotonate 12 (374 mg, 1.94 mmol) in the presence of Zn (252 mg, 3.88 mmol) and TMSCl (7 mg, 3 mol %) in 1,4-dioxane (6 mL) for 4 h, followed by hydrolysis with 50% aq K2CO3 (5 mL) gave a light-yellow solid; yield: 205 mg (62%); mp 194–195 °C; Rf = 0.5 (hexanes–EtOAc, 2:1). IR (KBr): 2904, 1643, 1612, 1550, 1493, 990, 921, 795, 761 cm–1. 1H NMR (400 MHz, CDCl3): δ = 12.49 (br s, 1 H), 7.72 (d, J = 6.9 Hz, 2 H), 7.59–7.40 (m, 4 H), 6.55–6.47 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 165.4, 147.1, 141.5, 133.6, 130.1, 129.2, 126.8, 118.7, 105.0. HRMS (ESI): m/z [M + H] calcd for C11H9NO: 172.0762; found: 172.0750.