Synlett 2019; 30(02): 124-128
DOI: 10.1055/s-0037-1610335
synpacts
© Georg Thieme Verlag Stuttgart · New York

Manganese(I)-Catalyzed Selective Functionalization of Alkynes

Zhongfei Yan
,
Chengjian Zhu
,
Jin Xie*
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. of China   Email: xie@nju.edu.cn
› Author Affiliations
We gratefully acknowledge financial support from the National Natural Science Foundation of China (21702098, 21672099 and 21732003), the Fundamental Research Funds for the Central Universities (No. 020514380158, 020514380131), the ‘1000-Youth Talents Plan’ and the program A for Outstanding PhD candidate of Nanjing University (201802A018).
Further Information

Publication History

Received: 16 October 2018

Accepted after revision: 25 October 2018

Publication Date:
30 November 2018 (online)


Abstract

Mn(I)-catalyzed selective functionalization of alkynes permits the convenient synthesis of substituted alkenes with high step and atom economies. Although the insertion of five-membered chelated manganacycle intermediates into alkynes has been widely reported, nonchelated Ar–Mn(I) species originating from commercially available arylboronic acids are unprecedented. Our new protocol achieved a challenging hydroarylation of unsymmetrical 1,3-diynes with arylboronic acids with complete regio-, stereo-, and chemoselectivity to give a wide array of trisubstituted conjugated (Z)-enynes in moderate to good yields.

 
  • References

    • 1a Kurita M, Tanigawa M, Narita S, Usuki T. Tetrahedron 2001; 57: 5899
    • 1b Fagnou K, Lautens M. Chem. Rev. 2003; 103: 169
    • 2a Carney JR, Dillon BR, Thomas SP. Eur. J. Org. Chem. 2016; 3912
    • 2b Valyaev DA, Lavigne G, Lugan N. Coord. Chem. Rev. 2016; 308: 191
    • 2c Wang C. Synlett 2013; 24: 1606
    • 2d Liu W, Groves JT. Acc. Chem. Res. 2015; 48: 1727
    • 2e Hu Y, Zhou B, Wang C. Acc. Chem. Res. 2018; 51: 816
  • 3 Liebeskind LS, Gasdaska JR, McCallum JS, Tremont SJ. J. Org. Chem. 1989; 54: 669
  • 4 Zhou B, Chen H, Wang C. J. Am. Chem. Soc. 2013; 135: 1264
  • 5 Yahaya NP, Appleby KM, Teh M, Wagner C, Troschke E, Bray JT. W, Duckett SB, Hammarback LA, Ward JS, Milani J, Pridmore NE, Whitwood AC, Lynam JM, Fairlamb IJ. S. Angew. Chem. Int. Ed. 2016; 55: 12455
    • 6a Shi L, Zhong X, She H, Lei Z, Li F. Chem. Commun. 2015; 51: 7136
    • 6b Ruan Z, Sauermann N, Manoni E, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 3172
    • 6c Lu Q, Greßies S, Klauck FJ. R, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 6660
    • 6d Wang H, Pesciaioli F, Oliveira CA, Warratz S, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 15063
    • 6e Liu B, Li J, Hu P, Zhou X, Bai D, Li X. ACS Catal. 2018; 8: 9463
    • 7a He R, Huang Z.-T, Zheng Q.-Y, Wang C. Angew. Chem. Int. Ed. 2014; 53: 4950
    • 7b Yang Y, Zhang Q, Shi J, Fu Y. Huaxue Xuebao 2016; 74: 422
    • 7c Lu Q, Greßies S, Cembellin S, Klauck FJ. R, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 12778
    • 7d Zhou B, Hu Y, Liu T, Wang C. Nat. Commun. 2017; 8: 1169
    • 7e Yu Y, Feng Y, Chauvin R, Ma S, Wang L, Cui X. Org. Lett. 2018; 20: 4209
    • 8a Robinson NP, Main L, Nicholson BK. J. Organomet. Chem. 1989; 364: C37
    • 8b Zhou B, Hu Y, Wang C. Angew. Chem. Int. Ed. 2015; 54: 13659

      For selected metal-catalyzed hydroarylations with ArB(OH)2, see:
    • 9a Hayashi T, Inoue K, Taniguchi N, Ogasawara M. J. Am. Chem. Soc. 2001; 123: 9918
    • 9b Harada Y, Nakanishi J, Fujihara H, Tobisu M, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2007; 129: 5766
    • 9c Lautens M, Yoshida M. Org. Lett. 2002; 4: 123
    • 9d Lautens M, Yoshida M. J. Org. Chem. 2003; 68: 762
    • 9e Hansmann MM, Hashmi AS. K, Lautens M. Org. Lett. 2013; 15: 3226
    • 9f Masutomi K, Noguchi K, Tanaka K. J. Am. Chem. Soc. 2014; 136: 7627
    • 9g Oh CH, Jung HH, Kim KS, Kim N. Angew. Chem. Int. Ed. 2003; 42: 805
    • 9h Kim N, Kim KS, Gupta AK, Oh CH. Chem. Commun. 2004; 618
    • 9i Liu Z, Derosa J, Engle KM. J. Am. Chem. Soc. 2016; 138: 13076
    • 9j Arcadi A, Aschi M, Chiarini M, Ferrara G, Marinelli F. Adv. Synth. Catal. 2010; 352: 493
    • 9k Yang Y, Wang L, Zhang J, Jin Y, Zhu G. Chem. Commun. 2014; 50: 2347
    • 9l Shirakawa E, Takahashi G, Tsuchimoto T, Kawakami Y. Chem. Commun. 2001; 2688
    • 9m Yamamoto Y, Kirai N, Harada Y. Chem. Commun. 2008; 2010
    • 9n Lin P.-S, Jeganmohan M, Cheng C.-H. Chem. Eur. J. 2008; 14: 11296
    • 9o Robbins DW, Hartwig JF. Science 2011; 333: 1423
    • 9p Xiao L.-J, Cheng L, Feng W.-M, Li M.-L, Xie J.-H, Zhou Q.-L. Angew. Chem. Int. Ed. 2018; 57: 461
  • 10 Yan Z, Yuan X, Zhao Y, Zhu C, Xie J. Angew. Chem. Int. Ed. 2018; 57: 12906
    • 11a Nussbaumer P, Leitner I, Mraz K, Stütz A. J. Med. Chem. 1995; 38: 1831
    • 11b Lan P, White LE, Taher ES, Guest PE, Banwell MG, Willis AC. J. Nat. Prod. 2015; 78: 1963
    • 11c Cheng J, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 42
  • 12 Hobza R, Havlas Z. Chem. Rev. 2000; 100: 4253