First Stereoselective Total Synthesis of Tumonoic Acid A and its Derivatives

G. Nagalatha
Siva Ganesh Narala
A. Venkat Narsaiah*

Organic Synthesis Laboratory, Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
vnakkirala2001@yahoo.com
vnakkirala@csiriict.in

Received: 05.07.2018
Accepted after revision: 21.08.2018
Published online: 14.09.2018
DOI: 10.1055/s-0037-1610365; Art ID: so-2018-d0041-op

Abstract An efficient protecting-group-free synthesis of tumonoic acid A and its derivatives has been accomplished. The synthesis started from commercially available \(n \)-octanal and employs the magnesium chloride catalysed anti-aldol reaction under the Evans protocol as the key step. Ethyl tumonoate A is a new tumonoic acid derivative with anti-inflammatory activity and inhibitory activity towards calcium oscillations in neocortical neurons.

Key words \(n \)-octanal, Wittig reaction, chiral auxiliary, hydrolysis, coupling

Marine natural product chemists have isolated and identified over 13,000 compounds, half of which show anticancer activity\(^1\) and are often used as lead structures in the development of drugs.\(^2\) Cyanobacteria represent a monophyletic bacterial phylum that are extraordinarily rich in bioactive molecules. Tumonoic acids A–C were isolated from the marine cyanobacteria (blue-green algae) \(Oscillatoria \) margaritifera, \(Lyngbya \) majuscula and \(Schizothrix \) calcicola (Figure 1).\(^3\) Ethyl tumonoate A exhibits anti-inflammatory activity in murine macrophage cells, inhibitory activity of calcium oscillations in neocortical neurons and in vitro anti-inflammatory activity in the RAW 264.7 murine macrophage cell-based nitric oxide assay with an \(IC_{50} \) of 9.8 \(\mu \)M (3.6 \(\mu \)g/mL).\(^4\) Ethyl tumonoate A shares a structural resemblance to a number of other cyanobacterial secondary metabolites, such as the viridamides and the microcolins.

Retrosynthetic analysis (Scheme 1) shows that ethyl tumonoate A could be derived from the intermediate, (\(S \))-4-benzyl-3-\([\text{2R,3S,E}]\)-3-hydroxy-2,4-dimethyldec-4-enoyl]oxazolidindin-2-one (\(8 \)), which could, in turn, be obtained from \(n \)-octanal \(2 \) through the Evans protocol without using protecting groups.

By using a Wittig protocol, octanal \(2 \) underwent olefination with (carbethoxyethylidene)triphenyl phosphorane to give unsaturated ester \(4 \) in 85% yield,\(^5\) which was then reduced to the allylic alcohol \(5 \) in 92% yield by treating with

![Figure 1](https://example.com/figure1.png)

Figure 1

![Scheme 1](https://example.com/scheme1.png)

Scheme 1
DIBAL-H (Scheme 2). Subsequent oxidation of alcohol 5 with MnO2 in anhydrous hexane provided the corresponding aldehyde 6 in 97% yield.6

The (E)-2-methyldec-2-enal 6 was subjected to diastereoselective aldol reaction by following the Evans protocol,7 catalysed by magnesium chloride, using (S)-4-benzyl-3-propionyloxazolidin-2-one 7 as the chiral auxiliary to give anti-aldol product 8 in 67% yield, with excellent diastereoselectivity, as determined by 1H NMR spectroscopy. The removal of the chiral auxiliary was achieved by oxidative hydrolysis with LiOH, H2O2 in THF-H2O, furnishing the desired (2R,3S,E)-3-hydroxy-2,4-dimethyldec-4-enoic acid (9).8 Finally, amide bond formation was achieved by coupling-acid 9 with L-proline ester in the presence of EDC·HCl and HOBt to give the target molecule, ethyl tumonoate A 1a, as a yellow liquid in 82% yield, with a specific rotation [α]D25 = –78 (c = 0.4, CHCl3) {Lit.4 [α]D25 = –77.5 (c = 1, CHCl3)}. Tumonoic acid A (1b) was obtained as a pale-yellow liquid with a specific rotation [α]D25 = –80 (c = 0.7, CHCl3) [Lit3 [α]D25 = –79 (c = 1.1, CHCl3)] by hydrolysis of ethyl tumonoate A using EtOH and NaOH. Methyl tumonoate A (1c) with a specific rotation [α]D25 = –52 (c = 1, CHCl3) [Lit3 [α]D25 = –51 (c = 1.3, CHCl3)] was obtained by esterification of tumonoic acid A (1b) using methyl iodide and potassium carbonate in DMF.

In conclusion, we have accomplished the stereoselective total synthesis of naturally occurring tumonoic acid A and its derivatives, starting from n-octanal, without using any protection protocols. The synthetic strategy involves successful application of the magnesium chloride-catalysed anti-aldol reaction under the Evans protocol and amide coupling.

All air- and moisture-sensitive reactions were carried out under an inert atmosphere (nitrogen or argon). Oven-dried glass apparatus was used to perform all reactions. Freshly distilled anhydrous solvents were used for air- and moisture-sensitive reactions. Commercially available reagents were used as purchased. Purification of compounds was carried out by column chromatography, using silica gel (60–120 mesh).1H NMR and 13C NMR spectra were recorded in CDCl3 at 300 MHz, Bruker Avance II and 500 MHz, Bruker Avance III HD, using TMS as an internal standard. IR spectra were recorded with a Perkin–Elmer FTIR 240-c spectrophotometer using KBr / thin-film optics. Mass spectra were recorded with a Finnigan MAT 1020 mass spectrometer.
operating at 70 eV. Specific rotation values were recorded with a Horiba sepa 300 polarimeter. High-resolution mass spectra (HRMS) of the residue were obtained with an Orbitrap, Thermo Scientific.

(E)-Ethyl 2-methyldec-2-enoate (4)

To a stirred solution of compound (2 × 30 mL), washed with brine, dried over Na$_2$SO$_4$, filtered, and concentrated as monitored by TLC, the excess peroxide was quenched with MeOH (1 mL) and a saturated solution of Rochelle’s salt (50 mL) at –78 °C. After 30 min, the reaction mixture was quenched with a 1:9 mixture to afford the residue was purified by column chromatography, eluting with EtOAc–hexane (5:95) to afford the pure product 4 (2.80 g, 85%) as a yellow liquid.

IR (neat): 2923, 2853, 1689, 1644, 1461, 1419, 1379, 1279, 1219, 933, and 810 cm$^{-1}$.

1H NMR (300 MHz, CDCl$_3$): δ = 6.80–6.72 (m, 1 H), 4.19 (q, J = 7.0 Hz, 2 H), 2.16 (q, J = 7.2 Hz, 2 H), 1.83 (s, 3 H), 1.38–1.20 (m, 13 H), 0.88 (t, J = 6.7 Hz, 3 H).

13C NMR (75 MHz, CDCl$_3$): δ = 168.2, 153.8, 135.3, 134.1, 130.1, 129.4, 128.9, 127.2, 81.4, 66.0, 55.6, 40.6, 37.7, 31.8, 29.6, 29.3, 29.1, 27.6, 22.6, 14.7, 14.0, 10.7.

(2R,3S,E)-3-Hydroxy-2,4-dimethyldec-4-enoic Acid (9)

To a stirred solution of compound 8 (1.10 g, 2.7 mmol) in THF-H$_2$O (4:1, 18 mL) at 0 °C was added aqueous H$_2$O$_2$ (30%, 1.86 mL, 16.4 mmol) followed by LiOH·H$_2$O (0.34 g, 8.2 mmol). The reaction mixture was then warmed to r.t. and stirred for 2 h. After completion of reaction, as monitored by TLC, the excess peroxide was quenched with Na$_2$SO$_4$ solution (1 M, 10.90 mL) and the mixture was stirred for an additional 20 min. The solvent was removed under reduced pressure and the chiral auxiliary was recovered by CH$_2$Cl$_2$ extraction (3 × 10 mL). The aqueous phase was acidified with HCl (1 M) to pH 2 and then extracted with EtOAc (3 × 15 mL). The combined organic layers were washed with brine, dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The crude product was purified by column chromatography, eluting with EtOAc–hexane (4:6) to afford pure 9 (0.50 g, 75%) as a pale-yellow liquid.

IR (neat): 3451, 2924, 2853, 1780, 1438, 1385, 1261, 1103, 1016, 926, 853 cm$^{-1}$.

1H NMR (300 MHz, CDCl$_3$): δ = 7.38–7.20 (m, 5 H, ArH), 5.49 (t, J = 6.9 Hz, 1 H), 4.70 (dd, J = 10.1, 6.9, 3.3 Hz, 1 H), 4.27–4.00 (m, 4 H), 3.32 (dd, J = 13.4, 3.2 Hz, 1 H), 2.84–2.74 (m, 1 H), 2.10–1.98 (m, 2 H), 1.68 (s, 3 H), 1.38–1.20 (m, 10 H), 1.06 (d, J = 6.4 Hz, 3 H), 0.88 (t, J = 6.6 Hz, 3 H).

13C NMR (75 MHz, CDCl$_3$): δ = 176.7, 153.8, 135.3, 134.1, 130.1, 129.4, 128.9, 127.2, 81.4, 66.0, 55.6, 40.6, 37.7, 31.8, 29.6, 29.3, 29.1, 27.6, 22.6, 14.7, 14.0, 10.7.

G. Nagalatha et al.

253

The crude product was purified by column chromatography, eluting with EtOAc–hexane (5:95) to afford the pure product 5 (1.70 g, 92%) as a yellow liquid.
(5)-Ethyl-1-((2R,3S,E)-3-hydroxy-2,4-dimethyldec-4-enoyl)pyrrolidine-2-carboxylate (Ethyl tumonoate A; 1a)

To a stirred solution of 9 (0.40 g, 1.6 mmol) in anhydrous CH2Cl2 (5 mL) was added EDC·HCl (0.35 g, 1.8 mmol) and HOBt (0.25 g, 1.8 mmol). After 10 min, a mixture of (S)-ethyl pyrrolidine-2-carboxylate (0.28 g, 1.9 mmol) and triethylamine (0.69 mL, 4.9 mmol) in CH2Cl2 (2 mL) was added dropwise, and the reaction mixture was stirred for 1 h. After completion of the reaction, as monitored by TLC, the mixture was cooled to 0 °C and K2CO3 (0.13 g, 0.9 mmol) was added, followed by iodomethane (0.04 mL, 0.7 mmol). The reaction mixture was allowed to warm to r.t. and stirred for 1 h, when it became a yellow heterogeneous solution. The mixture was then heated to 90 °C for 1 h and cooled to r.t. The reaction mixture was extracted with EtOAc (2 × 10 mL) and the combined organic layers were washed with brine, dried over Na2SO4, filtered and concentrated under reduced pressure.

The crude product was purified by column chromatography, eluting with EtOAc–hexane (3:7) mixture to afford the pure product 1a (0.5 g, 82%) as a yellowish liquid.

[a]25/D = −78 (c = 0.4, CHCl3).4

IR (neat): 3420, 2925, 2854, 1743, 1626, 1565, 1461, 1373, 1274, 1187, 1095, 914, 757, 703 cm−1.

1H NMR (500 MHz, CDCl3): δ = 5.44 (t, J = 7.0 Hz, 1 H), 4.50 (dd, J = 8.6, 4.2 Hz, 1 H), 4.24–4.12 (m, 3 H), 3.65 (t, J = 6.6 Hz, 2 H), 2.75 (p, J = 7.1 Hz, 1 H), 2.39–2.15 (m, 3 H), 2.10–1.94 (m, 3 H), 1.62 (s, 3 H), 1.38–1.20 (m, 13 H), 1.10 (d, J = 7.0 Hz, 3 H), 0.88 (t, J = 6.9 Hz, 3 H).

13C NMR (125 MHz, CDCl3): δ = 174.9, 172.1, 131.4, 129.1, 79.8, 61.0, 58.6, 47.0, 41.1, 31.8, 29.6, 29.4, 29.1, 20.0, 27.5, 24.7, 22.6, 14.4, 14.1, 11.4.

MS (ESI): m/z = 368 [M + H]+.

Funding Information

SGN and GNL are grateful to UGC-New Delhi and CSIR-New Delhi, respectively, for providing Fellowships, the Ministry of Science and Technology for providing financial support under DST-SERB-GAP-0563 and the Director CSIR-IICT for providing facilities. IICT Commun. No: IICT/pubs./2018/268.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610365.

References

