Enantioselective Bromolactonization of Deactivated Olefinic Acids: Studies Toward the Synthesis of Brominated Isochroman-1,4-diones

Danqing Li†
Hailong He†
Xiaodan Huangb
Pei Yu*c
Xiaojian Jiang*c 0000-0002-1355-3611

a First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, P. R. of China
b Guangzhou Wanglaoji Pharmaceutical Company Limited, Guangzhou 510450, P. R. of China
c Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardiocerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou 510632, P. R. of China
pennypeiyu@163.com
chemjxj2015@jnu.edu.cn

† These authors contributed equally to this work.

Received: 10.10.2018
Accepted after revision: 02.11.2018
Published online: 22.11.2018

License terms: [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/)

Abstract Enantioselective bromolactonization using an amino-carbamate catalyst to generate brominated isochroman-1,4-diones is described. Excellent yields and moderate enantioselectivities were achieved.

Key words isochroman-1,4-diones, bromolactonization, organocatalysis, enantioselectivity, deactivated olefins

Isochroman-1,4-diones are useful building blocks for constructing a significant number of natural products and biologically active molecules.1 Although numerous synthetic methods have been developed for the construction of isochroman-1,4-diones, only one stereoselective strategy, employing a transition-metal catalyst to achieve a limited scope of products, has been reported.2 Therefore, development of useful methods to obtain diverse enantioenriched isochroman-1,4-diones is desirable. Catalytic enantioselective halocyclization of olefinic substrates is a useful strategy to obtain diverse important heterocyclic building blocks.3 We recently described a catalytic asymmetric halolactonization of α,β-unsaturated ketone substrates 2 using amino-urea 1 as a catalyst (Scheme 1).4 Various halo-lactone compounds 3 bearing a ketone moiety with high enantiomeric excess are achievable using deactivated olefinic acids. With substrates containing a ketone, we proposed that the reaction might not go through a classical double hydrogen-bond activation mechanism and the bulky, electron-donating substituent on the urea might exert steric and/or electronic effects in the enantioselective step.

In considering isochroman-1,4-dione frameworks, we envisaged an intramolecular bromolactonization protocol. As shown in Scheme 1, the α,β-unsaturated carboxylic acid substrate 4a might be converted into the corresponding enantioenriched bromo-substituted isochroman-1,4-dione 5a in the presence of N-bromosuccinimide (NBS) and a suitable chiral catalyst. Herein, we disclose an organocatalytic process that produces brominated isochroman-1,4-diones by bromolactonization of prochiral precursors.

Scheme 1 Bromolactonization of deactivated olefinic acids
To test this hypothesis, a number of catalysts were evaluated and the results are displayed in Scheme 2. Catalytic amounts of (DHQ)$_2$PHAL 6 or chiral phosphoric acids 7a and 7b delivered products with low er values. Unlike α,β-unsaturated ketone substrates 2, substrate 4a with amino(thio)ureas 8a and 8b failed to produce products with an acceptable er value. Likewise, Tang’s urea catalyst 9 only delivered a product with low er value. Thus, it appears that a classical double hydrogen-bond activation mechanism is not involved with this substrate. Amino-thiocarbamate

Scheme 2 Study on effect of catalyst. Reactions were conducted with substrate 4a (0.1 mmol), catalyst (0.015 mmol), and NBS (0.13 mmol) in toluene (4 mL) at 25 °C for 24 hours in the absence of light. Ts = p-toluenesulfonyl. Isolated yield. The er were determined by chiral HPLC.
amino-carbamate catalyst helpful to deliver a good er ratio. The structurally related is base activation together with hydrogen bonding might be achieved in the presence of this catalyst indicates that Lew-

the fact that a certain degree of enantioselectivity could be

2, 15a). Other chiral scaffolds, such as L-proline derived car-

42:58. Further screening led us to use the cinchonine tives, such as BzOH and NsNH₂ on asymmetric bromolac-

unsaturated alkene desired product tion conditions. As shown in Table 1, the effect of addi-

in bromolactamizations,7 such catalysts containing a Ts previously been shown to exhibit excellent enantioselectivity in bromolactonizations,7 such catalysts containing a Ts group, a 4-CF₃-phenyl group, and a 3,5-(CF₃)₂-phenyl group failed to increase enantioselectivity in this case (Scheme 2, 15c, 15d and 15t). Conversely, carbamates with electron-

rich substituents, such as OMe and OEt were beneficial to the desired product with higher er. The inclusion of an additional methyl substituent was found to be capable of increasing the er. For example, the catalyst with a 3-methyl-

4-methoxyl carbamate moiety increased the enantioselectivity (Scheme 2, 15s). In particular, carbamate 15s gave the desired product 5a with 71:29 er (Scheme 2).

Subsequent studies concentrated on optimizing the re-

action conditions. As shown in Table 1, the effect of additives, such as BzOH and NsNH₂ on asymmetric bromolactonization of substrate 4a was detrimental, leading to lower enantioselectivities (entries 2–5). We suspect that the formation of NsNHBr, through Br exchange between NBS and NsNH₂ could be the reason in the latter instance. Utilization of other solvents, such as Et₂O, EtOAc, CH₂Cl₂ and CHCl₃ failed to induce higher er (entries 6–9). The enantioselectivity decreased when the temperature was lowered to 0 °C (entry 10) but the er increased to 73:27 when the temperature was 15 °C (entry 11). Other halogen sources such as N-bromophthalimide (NBP), 1,3-dibromo-5,5-di-

methylhydantoin (DBDMH), N-bromosaccharin and 2,4,4,6-tetramono-2,5-cyclohexadienone (TBCHD) led to inferior outcomes (entries 12–15). The amount of catalyst loading was found to be important. As demonstrated in Table 1, entry 16, the enantioselectivity decreased when 10 mol% catalyst was used. In addition, er was reduced slightly with 20 mol% catalyst (entry 17). Unfortunately, the enantioselectivity was poor when N-iodosuccinimide (NIS) was used instead of NBS (entry 18), while use of N-chlorosuccinimide (NCS, entry 20) failed to result in chlorolactonization (entry 18). However, 1,3-dichloro-5,5-dimethylhydantoin (DCDMH) could be used to perform the chlorolactonization and produced the desired chloro-substituted isochroman-1,4-dione in 77% yield (entry 19).

The scope of bromolactonization substrates 4a–m is illustrated by the examples in Scheme 3.9 Generally, moderate enantioselectivities were obtained for alkyl substituents, such as Me, Et, n-Pr, i-Pr, n-Bu and allyl groups (R² group). The er was 20:80 when the n-Pr substituent was present (Scheme 3, 4c). However, lower enantioselectivities

Table 1 Optimization of the Reaction Conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>Halogen source</th>
<th>Conditions</th>
<th>Er (%)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NBS</td>
<td>toluene, r.t.</td>
<td>71:29</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>NBS</td>
<td>BzOH (1.0), toluene, r.t.</td>
<td>70:30</td>
<td>96</td>
</tr>
<tr>
<td>3</td>
<td>NBS</td>
<td>BzOH (0.5), toluene, r.t.</td>
<td>70:30</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>NBS</td>
<td>NsNH₂ (1.0), toluene, r.t.</td>
<td>67:33</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>NBS</td>
<td>NsNH₂ (0.5), toluene, r.t.</td>
<td>68:32</td>
<td>98</td>
</tr>
<tr>
<td>6</td>
<td>NBS</td>
<td>Et₂O, r.t.</td>
<td>64:36</td>
<td>95</td>
</tr>
<tr>
<td>7</td>
<td>NBS</td>
<td>EtOAc, r.t.</td>
<td>61:39</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>NBS</td>
<td>CH₂Cl₂, r.t.</td>
<td>59:41</td>
<td>99</td>
</tr>
<tr>
<td>9</td>
<td>NBS</td>
<td>CHCl₃, r.t.</td>
<td>58:42</td>
<td>99</td>
</tr>
<tr>
<td>10</td>
<td>NBS</td>
<td>toluene, 0 °C</td>
<td>69:31</td>
<td>98</td>
</tr>
<tr>
<td>11</td>
<td>NBS</td>
<td>toluene, 15 °C</td>
<td>73:27</td>
<td>99</td>
</tr>
<tr>
<td>12</td>
<td>NBP</td>
<td>toluene, 15 °C</td>
<td>72:78</td>
<td>97</td>
</tr>
<tr>
<td>13</td>
<td>DBDMH</td>
<td>toluene, 15 °C</td>
<td>65:35</td>
<td>98</td>
</tr>
<tr>
<td>14</td>
<td>N-Bromosaccharin</td>
<td>toluene, 15 °C</td>
<td>64:36</td>
<td>95</td>
</tr>
<tr>
<td>15</td>
<td>TBCHD</td>
<td>toluene, 15 °C</td>
<td>61:39</td>
<td>96</td>
</tr>
<tr>
<td>16</td>
<td>NBS</td>
<td>toluene, 15 °C</td>
<td>71:29</td>
<td>97</td>
</tr>
<tr>
<td>17</td>
<td>NBS</td>
<td>toluene, 15 °C</td>
<td>70:73</td>
<td>99</td>
</tr>
<tr>
<td>18</td>
<td>NIS</td>
<td>toluene, 15 °C</td>
<td>56:44</td>
<td>98</td>
</tr>
<tr>
<td>19</td>
<td>NCS</td>
<td>toluene, 15 °C</td>
<td>–</td>
<td><5</td>
</tr>
<tr>
<td>20</td>
<td>DCDMH</td>
<td>toluene, 15 °C</td>
<td>48:52</td>
<td>77</td>
</tr>
</tbody>
</table>

*Reactions were carried out with substrate 4a (0.1 mmol), catalyst 15s (0.015 mmol), and halogen source (0.13 mmol) in solvent (4.0 mL) in the absence of light. The amount of BzOH and NsNH₂ was 1.0 or 0.5 equiv.

*The er was determined by chiral HPLC.

*Isolated yield.

*The amount of catalyst 15s was 0.01 mmol.

*The amount of catalyst 15s was 0.02 mmol.

*N-iodosuccinimide (NIS) was used as halogen source. The corresponding iodolactone was obtained instead of the bromolactone.

*1,3-Dichloro-5,5-dimethylhydantoin (DCDMH) was used as halogen source. The corresponding chlorolactone was obtained instead of the bromolactone.
were induced when the R² group was benzyl or a phenyl (Scheme 3, 4e and 4f). The yield dropped considerably when R² was allyl (Scheme 3, 4i), suggesting that the carbon–carbon double bond of the allyl moiety might also be involved in bromolactonization, generating significant amounts of side-products leading to the failure to isolate pure isochroman-1,4-dione 4i. An er of 24:76 could be obtained when the benzoic acid possessed 3,4-dichloro-substitution (Scheme 3, 4m).

To gain insight into the reaction mechanism, carbamate 16 was exposed to NBS solution; however, mass spectrometry did not indicate the formation of 16-Br (Scheme 4a), indicating that a species such as 16-Br might not be the active brominating species in the reaction. Based on the study by Yeung and co-workers,⁶f this simple carbamate can be used to catalyze bromolactonization, albeit with a slower reaction rate compared with the thiocarbamate catalyst. We suspect that the oxygen Lewis base might be able to activate NBS. A plausible reaction mechanism is shown in Scheme 4b. Thus, chiral transition state A might be formed in which the NH generates a hydrogen bond with a carbonyl group of NBS. The oxygen Lewis base might thus interact with the Br on NBS during the process of enantioselective bromocyclization. Substrate 4 contains a carboxylic acid group, which might coordinate with the basic nitrogen of the quinuclidine moiety. The role of oxygen Lewis base, however, remains unclear and will be the subject of further investigation.

In summary, we have described an enantioselective protocol to produce synthetically valuable brominated isochroman-1,4-diones with excellent yields and moderate enantioselectivities. The results shed some light on the design of chiral carbamate catalysts for asymmetric halolactonization of deactivated olefinic acids.

Funding Information

We thank the Natural Science Foundation of Guangdong Province (Grant No. 2017B050506006) and Fundamental Research Funds for the Central University (Grant No. 21617470) for financial support.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610401.
References and Notes

(8) Representative Procedure for Generating α,β-Unsaturated Ketone 4a: To a solution of keto acid A (3.0 mmol, 1.0 equiv) in acetic acid (6 mL) was added pyrrolidine (0.1 mL, 1.2 mmol, 0.4 equiv) and formaldehyde solution (36.5–38% in H2O, 1 mL, 13.2 mmol, 4.4 equiv) at room temperature. The mixture was then stirred for 48 h at 85 °C. After evaporation of the acidic acid, water and EtOAc were added. The organic layer was washed with water, dried over magnesium sulphate and filtered. Concentration of the organic layer afforded the crude product, which was further purified by flash column chromatography (hexane/EtOAc) to give the corresponding α,β-unsaturated ketone 4a. Yield: 427.5 mg (75%); yellow solid; mp 125–126 °C; 1H NMR (CDCl3, 300 MHz): δ = 10.84 (br/ s, 1 H), 8.09–7.33 (m, 4 H), 5.80 (s, 1 H), 5.30 (s, 1 H), 2.07 (s, 3 H); 13C NMR (CDCl3, 75 MHz): δ = 199.2, 170.9, 145.9, 142.7, 133.2, 130.8, 129.4, 127.8, 127.7, 17.4; HRMS (TOF): [m/z] [M − 1]+ calcld for C11H9O3: 189.0562; found: 189.0561.

(9) Representative Procedure for Generating Isocroman-1,4-dione 5a: To a solution of α,β-unsaturated ketone 4a (38 mg, 0.2 mmol, 1.0 equiv) and catalyst 15s (14.6 mg, 0.03 mmol, 0.15 equiv) in toluene (8 mL), at 15 °C, the dark under nitrogen was added NBS (46 mg, 0.26 mmol, 1.3 equiv). The resulting mixture was stirred at 15 °C and monitored by TLC. The reaction was quenched with saturated Na2SO3 (1 mL) at 15 °C and then was allowed to warm to room temperature. The mixture was diluted with water (3 mL), extracted with EtOAc, dried over MgSO4, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc) to yield the corresponding isocroman-1,4-dione 5a. Yield: 53.1 mg (99%); yellow oil; [α]20 = 4.9 (c 1.0, MeOH, 73:27 er); 1H NMR (CDCl3, 300 MHz): δ = 8.32–7.83 (m, 4 H), 3.99 (dd, J1 = 9.0 Hz, J2 = 93.0 Hz, 2 H), 1.78 (s, 3 H); 13C NMR (CDCl3, 75 MHz): δ = 192.3, 160.9, 135.9, 134.7, 130.7, 126.6, 87.6, 37.4, 25.4; HRMS (TOF): [m/z] [M + H]+ calcd for C11H9BrO2: 269.1278; found: 269.1277.

1.0, MeOH, 73:27 er); 1H NMR (CDCl3, 300 MHz): δ = 8.32–7.83 (m, 4 H), 3.99 (dd, J1 = 9.0 Hz, J2 = 93.0 Hz, 2 H), 1.78 (s, 3 H); 13C NMR (CDCl3, 75 MHz): δ = 192.3, 160.9, 135.9, 134.7, 130.7, 126.6, 87.6, 37.4, 25.4; HRMS (TOF): [m/z] [M + H]+ calcd for C11H9BrO2: 269.1278; found: 269.1277.