Polymer-Supported
Synthesis

Key words

hexagonal boron

 carbon nitridedehydrogenation

N -heterocycles

visible light

 H2
blue LEDs, r.t., 12 h

$+\mathrm{nH}_{2}$

$(0.30 \mathrm{mmol})$

Results:

79% yield

95% yield

87\% yield

91\% yield

82% yield

86\% yield

41% yield

79% yield

85% yield

87\% yield

67\% yield

89\% yield

85% yield

52\% yield

Significance: Hexagonal boron carbon nitride (h BCN) catalyzed the acceptorless dehydrogenation of hydroquinolines, hydroisoquinolines, and indolines in water at room temperature under visiblelight irradiation to give the corresponding aromatic N -heterocycles in 41-95\% yield (14 examples).

Comment: The authors previously reported the preparation of h - BCN and its application to the oxidative dehydrogenation of ethylbenzene (Angew. Chem. Int. Ed. 2017, 56, 8231). Under dark conditions, the dehydrogenation with h-BCN did not proceed. In the dehydrogenation of 1,2,3,4tetrahydroquinoline, the catalyst was recovered by simple filtration and reused four times with slight loss of its catalytic activity.

