Synlett 2018; 29(15): 2023-2026
DOI: 10.1055/s-0037-1610654
letter
© Georg Thieme Verlag Stuttgart · New York

Rhodium(III)-Catalyzed C–H Activation/Alkylation of Diazabicyclic Olefins with Aryl Ketones: Facile Synthesis of Functionalized Cyclopentenes

P. V. Santhini
a   Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Email: e-mail-radhu2005@gmail.com
b   Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
,
Greeshma Gopalan
a   Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Email: e-mail-radhu2005@gmail.com
b   Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
,
A. S. Smrithy
a   Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Email: e-mail-radhu2005@gmail.com
,
a   Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Email: e-mail-radhu2005@gmail.com
b   Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
› Author Affiliations
S.P.V. thanks UGC for research fellowship. Financial assistance from the Science and Engineering Research Board (SERB), New Delhi (SR/S1/OC-24/2014) and from the Council of Scientific and Industrial Research (12th FYP project, ORIGIN-CSC-0108), New Delhi, is greatly acknowledged.
Further Information

Publication History

Received: 13 June 2018

Accepted after revision: 15 July 2018

Publication Date:
23 August 2018 (online)


Abstract

A facile synthesis of biologically important trans-functionalized cyclopentenes by a mild Rh(III)-catalyzed alkylation of strained ­diazabicyclic olefins with aryl ketones in the presence of ammonium ­acetate has been developed. The reaction proceeds through C–H bond activation of the aryl ketone groups by transforming them in to an ­autocleavable directing group, such as in situ-formed imine.

Supporting Information

 
  • References and Notes

    • 1a Jia C. Kitamura T. Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
    • 1b Miura M. Nomura M. Top. Curr. Chem. 2002; 219: 211
    • 1c Handbook of C–H Transformations: Applications in Organic Synthesis. Dyker G. Wiley-VCH; Weinheim: 2005
    • 2a Murai S. Kakiuchi F. Sekine S. Tanaka Y. Kamatani A. Sonoda M. Chatani N. Nature 1993; 366: 529
    • 2b Chatani N. Asaumi T. Ikeda T. Yorimitsu S. Ishii Y. Kakiuchi F. Murai S. J. Am. Chem. Soc. 2000; 122: 12882
    • 2c Padala K. Jeganmohan M. Org. Lett. 2011; 13: 6144
    • 2d Muralirajan K. Parthasarathy K. Cheng C.-H. Angew. Chem. Int. Ed. 2011; 50: 4169
    • 2e Tsuchikama K. Kasagawa M. Endo K. Shibata T. Synlett 2010; 97
    • 2f Gandeepan P. Parthasarathy K. Cheng C.-H. J. Am. Chem. Soc. 2010; 132: 8569
  • 3 Patureau FW. Besset T. Kuhl N. Glorius F. J. Am. Chem. Soc. 2011; 133: 2154
    • 5a Yao M.-L. Adiwidjaja G. Kaufmann DE. Angew. Chem. Int. Ed. 2002; 41: 3375
    • 5b Radhakrishnan KV. Sajisha VS. Anas K. Krishnan KS. Synlett 2005; 2273
    • 5c John J. Sajisha VS. Mohanlal S. Radhakrishnan KV. Chem. Commun. 2006; 3510
    • 5d John J. Anas S. Sajisha VS. Viji S. Radhakrishnan KV. Tetrahedron Lett. 2007; 48: 7225
    • 5e Joseph N. Rajan R. John J. Devika NV. Chand SS. Suresh E. Pihko PM. Radhakrishnan KV. RSC Adv. 2013; 3: 7751
    • 5f Pérez Luna A. Cesario M. Bonin M. Micouin L. Org. Lett. 2003; 5: 4771
    • 5g Bournaud C. Falciola C. Lecourt T. Rosset S. Alexakis A. Micouin L. Org. Lett. 2006; 8: 3581
    • 5h Palais L. Mikhel IS. Bournaud C. Micouin L. Falciola CA. Augustin M.-V. Rosset S. Bernardinelli G. Alexakis A. Angew. Chem. Int. Ed. 2007; 46: 7462
    • 5i Martins A. Lemouzy A. Lautens M. Org. Lett. 2009; 11: 181
    • 6a John J. Indu U. Suresh E. Radhakrishnan KV. J. Am. Chem. Soc. 2009; 131: 5042
    • 6b Bhanu Prasad BA. Buechele AE. Gilbertson SR. Org. Lett. 2010; 12: 5422
    • 6c Joseph N. John J. Rajan R. Thulasi S. Mohan A. Suresh E. Radhakrishnan KV. Tetrahedron 2011; 67: 4905
    • 6d Prakash P. Jijy E. Preethanuj P. Pihko PM. Sarath Chand S. Radhakrishnan KV. Chem. Eur. J. 2013; 19: 10473
    • 6e Sarath Chand S. Jijy E. Prakash P. Szymoniak J. Preethanuj P. Dhanya BP. Radhakrishnan KV. Org. Lett. 2013; 15: 3338
    • 6f John J. Rajan R. Chand SS. Prakash P. Joseph N. Suresh E. Radhakrishnan KV. Tetrahedron 2013; 69: 152
    • 6g Santhini PV. Smrithy S. Jesin CP. I. Varughese S. John J. Radhakrishnan KV. Chem. Commun. 2018; 54: 2982
    • 7a Zhang Y. Wu QF. Cui S. Chem. Sci. 2014; 5: 297
    • 7b Praveen P. Jijy E. Aparna PS. Viji S. Radhakrishnan KV. Tetrahedron Lett. 2014; 55: 916
    • 7c Aparna PS. Prabha B. Prakash P. Jijy E. Varma RL. Radhakrishnan KV. Tetrahedron Lett. 2014; 55: 865
    • 7d Santhini PV. Nimisha G. John J. Suresh E. Varma RL. Radhakrishnan KV. Chem. Commun. 2017; 53: 1848
    • 8a Jun C.-H. Moon CW. Hong J.-B. Lim S.-G. Chung K.-Y. Kim Y.-H. Chem. Eur. J. 2002; 485
    • 8b Zheng L. Ju J. Bin Y. Hua R. J. Org. Chem. 2012; 77: 5794
    • 8c Lee H. Sim Y.-K. Park J.-W. Jun C.-H. Chem. Eur. J. 2014; 20: 323
    • 8d Yi Y. Lee H. Jun C.-H. Chem. Commun. 2016; 52: 10171
    • 9a Wang H. Schröder N. Glorius F. Angew. Chem. Int. Ed. 2013; 52: 5386
    • 9b Sakiyama N. Noguchi K. Tanaka K. Angew. Chem. Int. Ed. 2012; 51: 5976
  • 10 Diethyl 1-[(1S*,2R*)-2-(2-Acetylphenyl)cyclopent-3-en-1-yl]hydrazine-1,2-dicarboxylate (4); Typical Procedure Azabicyclic olefin 1a (100 mg, 0.42 mmol), acetophenone (2a; 50 mg, 0.42 mmol), NH4OAc (64 mg, 0.83 mmol), [RhCp*Cl2]2(10 mg, 3 mol%), and Cu(OAc)2 (150 mg, 0.83 mmol) were weighed into a Schlenk tube, and the mixture was degassed for 10 min. Anhyd DCE (1 mL) was added, and the mixture was purged with argon and stirred at 80 °C for 24 h. The solvent was evaporated in vacuo and the residue was purified by column chromatography [silica gel (100–200 mesh); Ethyl acetate-Hexane polarities] to give a viscous liquid; yield: 121 mg (81%); TLC (silica gel): Rf = 0.43 (25% EtOAc–hexane). 1H NMR (500 MHz, CDCl3, TMS): δ = 7.64 (d, J = 7.5 Hz, 1 H), 7.54 (br s, 1 H), 7.50–7.47 (m, 1 H), 7.43–7.42 (m, 1 H), 7.31–7.28 (m, 1 H), 5.89–5.88 (m, 1 H), 5.54–5.52 (m, 1 H), 4.94–4.69 (m, 2 H), 4.26–4.22 (m, 2 H), 4.06–3.76 (m, 2 H), 2.72–2.60 (m, 2 H), 2.59 (s, 3 H), 1.32–1.26 (m, 4 H), 1.15 (br s, 1 H), 0.71 (br s, 1 H). 13C NMR (125 MHz, CDCl3): δ = 201.8, 156.1, 152.9, 143.8, 137.8, 132.8, 132.2, 130.6, 129.3, 129.1, 126.2, 67.9, 61.9, 61.8, 47.2, 34.8, 29.8, 14.5, 13.9. HRMS (ESI-Orbitrap): m/z [M + Na]+ calcd for C19H24N2NaO5: 383.1583; found: 383.1573.