Synlett 2019; 30(02): 225-229
DOI: 10.1055/s-0037-1610679
letter
© Georg Thieme Verlag Stuttgart · New York

Urea–Zinc Chloride Eutectic Mixture-Mediated One-Pot Synthesis of Imidazoles: Efficient and Ecofriendly Access to Trifenagrel

Natalia López Higuera
,
Diana Peña-Solórzano
,
Cristian Ochoa-Puentes*
The authors wish to thank COLCIENCIAS (grant no. FP44842-155-2018) and Dirección Nacional de Investigaciones-Universidad Nacional de Colombia for funding this research.
Further Information

Publication History

Received: 26 September 2018

Accepted after revision: 19 November 2018

Publication Date:
19 December 2018 (online)


Abstract

The low-melting mixture urea–ZnCl2 was evaluated as a novel reaction medium for the synthesis of imidazoles. The reaction between a dicarbonyl compound, ammonium acetate, and an aromatic aldehyde is efficiently catalyzed by the eutectic solvent, yielding a wide variety of triaryl-1H-imidazoles or 2-aryl-1H-phenanthro[9,10-d]imidazoles in good to excellent yields. In addition, the eutectic solvent was reused in five cycles without loss of its catalytic activity. This protocol was further explored for the synthesis of the drug trifenagrel, giving an excellent yield.

Supporting Information

 
  • References and Notes

  • 1 Black JW, Durant GJ, Emmett JC, Ganellin CR. Nature 1974; 248: 65
  • 2 Silva VG, Silva RO, Damasceno SR. B, Carvalho NS, Prudêncio RS, Aragão KS, Guimarães MA, Campos SA, Véras LM. C, Godejohann M, Leite JR. S. A, Barbosa AL. R, Medeiros J.-VR. J. Nat. Prod. 2013; 76: 1071
  • 3 Ali I, Lone MN, Aboul-Enein HY. MedChemComm 2017; 8: 1742
  • 4 Rani N, Sharma A, Singh R. Mini-Rev. Med. Chem. 2013; 13: 1812
  • 5 Sharma D, Narasimhan B, Kumar P, Judge V, Narang R, De Clercq E, Balzarini J. Eur. J. Med. Chem. 2009; 44: 2347
  • 6 Uçucu Ü, Karaburun NG, Işikdağ İ. Farmaco 2001; 56: 285
  • 7 Johnson JC, Martinez O, Honko AN, Hensley LE, Olinger GG, Basler CF. Antiviral Res. 2014; 107: 102
  • 8 Chang LL, Sidler KL, Cascieri MA, de Laszlo S, Koch G, Li B, MacCoss M, Mantlo N, O’Keefe S, Pang M, Rolando A, Hagmann WK. Bioorg. Med. Chem. Lett. 2001; 11: 2549
  • 9 Chen L.-m, Wu X.-P, Ruan J.-w, Liang Y.-j, Ding Y, Shi Z, Wang X.-w, Gu L.-Q, Fu L.-w. Oncol. Res. 2004; 14: 355
  • 10 Amarasekara AS. Chem. Rev. 2016; 116: 6133
  • 11 Marion N, Díez-González S, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 2988
  • 12 Krawczyk P, Jędrzejewska B, Pietrzak M, Janek T. J. Photochem. Photobiol., B 2017; 166: 74
  • 13 Gupta RC, Ali R, Razi SS, Srivastava P, Dwivedi SK, Misra A. RSC Adv. 2017; 7: 4941
  • 14 Van Leusen AM, Wildeman J, Oldenziel OH. J. Org. Chem. 1977; 42: 1153
  • 15 Debus H. Justus Liebigs Ann. Chem. 1858; 107: 199
  • 16 Marckwald W. Ber. Dtsch. Chem. Ges. 1892; 25: 2354
  • 17 Benincori T, Brenna E, Sannicolo F. J. Chem. Soc., Perkin Trans. 1 1993; 675
  • 18 Hernandez Munoz JA, Junior JL, Martins da Silva F. Curr. Org. Synth. 2014; 11: 824
  • 19 Chen XY, Englert U, Bolm C. Chem. Eur. J. 2015; 21: 13221
  • 20 Vessally E, Soleimani-Amiri S, Hosseinian A, Edjlali L, Bekhradnia A. RSC Adv. 2017; 7: 7079
  • 21 Arai N, Takahashi M, Mitani M, Mori A. Synlett 2006; 3170
    • 22a Kantam ML, Venkanna GT, Sridhar C, Sreedhar B, Choudary BM. J. Org. Chem. 2006; 71: 9522
    • 22b Cui Y.-L, Guo X.-N, Wang Y.-Y, Guo X.-Y. Sci. Rep. 2015; 5: 12005
  • 23 Recnik L.-M, Abd El Hameid M, Haider M, Schnürch M, Mihovilovic MD. Synthesis 2013; 45: 1387
  • 24 Kamijo S, Yamamoto Y. Chem. Asian J. 2007; 2: 568
  • 25 Teimouri A, Chermahini AN. J. Mol. Catal. A: Chem. 2011; 346: 39
  • 26 MaGee DI, Bahramnejad M, Dabiri M. Tetrahedron Lett. 2013; 54: 2591
  • 27 Nagargoje D, Mandhane P, Shingote S, Badadhe P, Gill C. Ultrason. Sonochem. 2012; 19: 94
  • 28 Wolkenberg SE, Wisnoski DD, Leister WH, Wang Y, Zhao Z, Lindsley CW. Org. Lett. 2004; 6: 1453
  • 29 Liu P, Hao J.-W, Mo L.-P, Zhang Z.-H. RSC Adv. 2015; 5: 48675
  • 30 Zhang Q, De Oliveira Vigier K, Royer S, Jérôme F. Chem. Soc. Rev. 2012; 41: 7108
  • 31 Abbott AP, Barron JC, Ryder KS, Wilson D. Chem. Eur. J. 2007; 13: 6495
  • 32 Xu C, Wu Q, Hua Y, Li J. J. Solid State Electrochem. 2014; 18: 2149
  • 33 Lian H, Hong S, Carranza A, Mota-Morales JD, Pojman JA. RSC Adv. 2015; 5: 28778
  • 34 Seyedi N, Khabazzadeh H, Saeednia S. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2015; 45: 1501
  • 35 Rong K, Huang L, Zhang H, Zhai J, Fang Y, Dong S. Chem. Commun. 2018; 54: 8853
  • 36 Navarro CA, Sierra CA, Ochoa-Puentes C. RSC Adv. 2016; 6: 65355
    • 37a Mobinikhaledi A, Amiri AK. Res. Chem. Intermed. 2015; 41: 2063
    • 37b Wang L, Zhong X, Zhou M, Zhou W.-y, Chen Q, He M.-Y. J. Chem. Res. 2013; 37: 236
    • 37c Bafiti B, Khabazzadeh H. J. Chem. Sci. (Berlin, Ger.) 2014; 126: 881
    • 37d Bakavoli M, Eshghi H, Rahimizadeh M, Housaindokht MR, Mohammadi A, Monhemi H. Res. Chem. Intermed. 2015; 41: 3497
  • 38 Imidazoles 3ay; General ProcedureUrea–ZnCl2 DES (3.5:1; 0.8 g) was heated to 70 °C to form a clear melt. To this melt was added a mixture of the appropriate dicarbonyl compound (1 mmol), aryl aldehyde (1 mmol), and NH4OAc (2 mmol), and the mixture was stirred at 110 °C for 30 min. When the reaction was complete (TLC), the reaction was quenched by adding H2O to the hot mixture, which was then cooled to r.t. The crude solid was collected by filtration then washed with H2O and EtOH (3 × 2 mL) to afford the pure product.2-(4-Nitrophenyl)-4,5-diphenyl-1H-imidazole (3c)Yellow solid; yield: 327 mg (96%); mp 235–237 °C (Lit.42 237–239 °C). IR (KBr): 3250, 1681, 856 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.29 (d, J = 8.9 Hz, 2 H, ArH), 8.10 (d, J = 8.7 Hz, 2 H, ArH), 7.58–7.52 (m, 4 H, ArH), 7.40–7.32 (m, 6 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 147.4, 143.4, 135.5, 134.9, 129.9, 129.0, 128.7, 127.8, 125.5, 124.3. MS: m/z = 341 [M+]. N,N-Dimethyl-4-(1H-phenanthro[9,10-d]imidazol-2-yl)aniline (3w)Green solid; yield: 313 mg (93%); mp 258–260 °C (Lit.43 257 °C). IR (KBr): 3381, 1689, 821 cm–1. 1H NMR (400 MHz, DMSO): δ = 8.91 (d, J = 8.1 Hz, 3 H, ArH), 8.66 (d, J = 8.1 Hz, 2 H, ArH), 8.21 (d, J = 9.0 Hz, 2 H, ArH), 7.82–7.79 (m, 3 H, ArH), 6.95 (d, J = 9.2 Hz, 2 H), 3.06 (s, 6 H, NMe2). 13C NMR (100 MHz, DMSO): δ = 154.8, 149.6, 149.0, 146.4, 142.1, 139.5, 133.5, 130.9, 129.6, 128.9, 128.3, 128.0, 127.2, 126.6, 124.8, 124.5, 123.6, 123.0, 122.5, 112.2, 109.2, 108.7, 40.5. MS: m/z = 337 [M+].{2-[2-(4,5-Diphenyl-4,5-dihydro-1H-imidazol-2-yl)phenoxy]ethyl}dimethylamine (Trifenagrel)Light-yellow solid; yield: 352 mg (92%); mp 133–135 °C. FTIR (KBr): 3429, 2922, 1734, 1219, 1039 cm–1. 1H NMR (400 MHz, DMSO): δ = 8.20 (dd, J = 7.8, 1.7 Hz, 1 H, ArH), 7.74 (s, 1 H, ArH), 7.49 (d, J = 7.3 Hz, 4 H, ArH), 7.37 (t, J = 8.9 Hz, 3 H, ArH), 7.24 (d, J = 8.2 Hz, 1 H, ArH), 7.12 (t, J = 7.5 Hz, 1 H, ArH), 7.06 (dd, J = 9.0, 3.4 Hz, 3 H, ArH), 4.28 (t, J = 5.2 Hz, 2 H, –OCH2), 2.64 (t, J = 4.8 Hz, 2 H, –CH2–N–), 1.90 (s, 6 H, NMe2). 13C NMR (100 MHz, DMSO): δ = 161.2, 155.4, 143.4, 138.6, 130.0, 128.9, 128.4, 127.8, 127.4, 122.2, 120.0, 115.0, 65.9, 57.8, 44.4. MS: m/z = 383 [M+].
    • 39a Maleki A, Movahed H, Paydar R. RSC Adv. 2016; 6: 13657
    • 39b Zarnegar Z, Safari J. New J. Chem. 2014; 38: 4555
  • 40 Abrahams SL, Hazen RJ, Baston AG, Philips AP. J. Pharmacol. Exp. Ther. 1989; 249: 359
    • 41a Mukhopadhyay C, Tapaswi PK, Drew MG. B. Tetrahedron Lett. 2010; 51: 3944
    • 41b Bharate JB, Abbat S, Sharma R, Bharate PV, Vishwakarma RA, Bharate SB. Org. Biomol. Chem. 2015; 13: 5235
    • 41c Mirjafari A. Environ. Chem. Lett. 2014; 12: 177
  • 42 Esmaeilpour M, Javidi J, Zandi M. New J. Chem. 2015; 39: 3388
  • 43 Eshghi H, Rahimizadeh M, Hasanpour M, Bakavoli M. Res. Chem. Intermed. 2015; 4187