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Abstract The possibility of deoxofluorination of -keto esters using
SF4 was investigated. The scope and limitation of the reaction were de-
termined. The efficient method for the synthesis of ,-difluorocarbox-
ylic acids was elaborated based on the reaction. The set of mentioned
acids, being the perspective building blocks for medicinal chemistry,
were synthesized on multigram scale. The safety of SF4 use was dis-
cussed. The described method does not improve upon the safety of us-
ing SF4, but practical recommendations for working with the reagent
are proposed. Despite the hazards of using toxic SF4, a significant in-
crease of efficacy in the synthesis of medicinal-chemistry-relevant
building blocks, based on the reaction, in comparison with earlier de-
scribed approaches is shown.

Key words organofluorine compounds, deoxofluorination, sulfur
tetrafluoride, -keto esters, ,-difluorocarboxylic acids, building blocks

There are many efficient reagents for organic synthesis
known from the classical textbooks, but by no means are all
of them popular among chemists for real application in lab-
oratory practice. Gaseous or volatile compounds which pos-
sess extremely high toxicity, like CH2N2, HCN, COCl2, and
MeNCO, are among the most characteristic examples. The
Bhopal disaster, where approximately 200,000 people were
exposed to MeNCO and around 20,000 died as a result, has
clearly demonstrated such reagents as actually dangerous.1
Lately some of the above-mentioned reagents are experi-

encing a renaissance due to achievements in flow technolo-
gy. For example, during the last 10 years the safe flow
method using CH2N2

2 and HCN3 has been developed. Anoth-
er, more common way of obtaining the same results, as in
the case of using the dangerous reagents, is development of
their less toxic, more convenient, and safe synthetic equiva-
lents. Thus Me3SiCHN2,4 Me3SiCN,5 triphosgene,6 and MeN-
HCO2CH2CF3

7 were successfully introduced into organic
synthesis. But despite the great achievements in modern
reagent and technique developments, some synthetic
transformations, which require extremely toxic and haz-
ardous gaseous reagents are still remaining. SF4 is not so
common reagent in comparison with the discussed above,
but it is a key compound in organofluorine chemistry.8 The
compound is a colorless, highly reactive, and corrosive gas
(bp –38 °C), possessing extreme toxicity (LD50 = 19 ppm (86
mg/m3, 4 h, rats9)). Also, SF4 causes burns on unprotected
skin due to formation of HF and SOF2 as a result of hydroly-
sis. Of course, such properties of SF4 significantly limited its
application in synthesis, especially in regular laboratories.
Nevertheless, unique properties of SF4 in substitution of
carbonyl oxygen with two fluorine atoms are very attrac-
tive. This is making development of more safe and conve-
nient SF4-based analogues like DAST (Et2NSF3) and XtalFluor-E
([Et2N+=SF2]BF4

–) or other similar reactants like fluoro-
amine reagents (FAR) very important.10 Such replacement
of reagents is successful, but it does not always happen. Fluo-
rination of carboxylic acids to CF3 derivatives is one of the
© 2020. Thieme. All rights reserved. Synlett 2020, 31, 565–574
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most known examples to the contrary. This process pro-
ceeds smoothly under SF4 treatment, but in the case of
DAST or XtalFluor-E the reaction stops at the fluoroanhy-
dride formation step. There is only one successful example
described – Fluolead (4-tert-Butyl-2,6-dimethylphenylsul-
fur trifluoride), which is used for fluorination of carboxylic
acids to CF3 derivatives instead of SF4.11 However, Fluolead
is a rather expensive reagent, therefore this approach does
not find further application. In this work we describe an-
other example of utilizing SF4 as unique deoxofluorinative
reagent, like cited above. As a part of our ongoing efforts on
design and synthesis of advanced reagents for medicinal
chemistry12 and especially functionalized gem-difluoro de-
rivatives13, we chose -keto esters, the precursors for ,-
difluorocarboxylic acids, promising building blocks for me-
dicinal chemistry, as substrates for the fluorination.

The products of deoxofluorination of -keto esters are
corresponding ,-difluorocarboxylic acids, building blocks
of high value to medicinal chemistry. Some recent repre-
sentative examples A–F of such building blocks from me-
dicinal chemistry programs related to different therapeu-
tics areas are shown in Figure 1.14 In spite of wide use of
,-difluorocarboxylic acids as building blocks by big phar-
ma and biotech companies, direct and efficient approaches
to their synthesis are still unknown. The analysis of com-
pounds presented in the literature reveals, that many of
them are known, but available only from commercial sourc-
es without any information about synthetic routes and pro-
cedures.

The first attempts of deoxofluorination of -keto esters
were made in the early 1980s by L. M. Yagupol’skii and co-
workers.15 As were shown in these seminal researches, the
reaction was accompanied by side dehydrofluorination pro-
cesses, the impact of which could be decreased by reducing

the temperature (Scheme 1). Therefore, the reaction in HF
media at room temperature could be considered as prepar-
ative.16 Nevertheless, all attempts to replace SF4 by DAST
failed. Unexpectedly, in this reaction DAST, introducing an
additional fluorine into the molecule, formally oxidizes the
substrate.17 In our previous investigations we also tried to
optimize the reaction and replaced SF4 with DAST-type re-
agents, but all our attempts failed as well. In consequence
an alternative synthetic route was proposed.18 The strategy
was based on three-step transformation of the ester func-
tion into a nonacceptor CH2OAc group, which allowed
DAST-based deoxofluorination. The further deacylation/ox-
idation led to desired ,-difluorocarboxylic acids. In spite
of successful realization of the strategy additional six-step
sequence was needed, so the total yields were in 14–16%
range. Such avoiding of SF4 is justified for the small-scale
synthesis but inefficient for the further scale-up. Therefore,
we decided to test diverse deoxofluorination reactions of -
keto esters with hazardous SF4 in autoclave conditions and
scale them up to hundred grams.

Firstly, we tested the reaction of deoxofluorination by
SF4 with and without addition of HF at different tempera-
tures and different ethylacetoacetate/SF4 ratios using the
simplest ethylacetoacetate (1a) as a model compound. It
was found that in the absence of HF, the reaction proceeded
nonselectively with predominant dehydrofluorination to
the product 3 at 100 °C, as well as at 25 °C. The fraction of
dehydrofluorination was dramatically decreased by addi-
tion of HF to the system, and at 25 °C a significant selectivi-
ty of formation of ,-difluorocarboxylic ester 2a was
achieved (Scheme 1). Further optimization showed that the
most favorable was the amount of HF of 0.8 mL per 1 g of
ethylacetoacetate, the ratio of SF4/keto ester = 1.7:1, and the
reaction time of 10 h. Using these conditions, we performed

Figure 1  Example of bioactive compounds based on ,-difluorocarboxylic acids
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the reaction on 100 g scale of ethylacetoacetate in 1.2 L
Hastelloy autoclave. The level of dehydrofluorination was
less than 5% and as a result the desired ,-difluorocarbox-
ylic ester 2a was isolated in preparative 70% yield.

For the investigation of scope and limitation of the de-
veloped protocol, a diverse set of substrates were chosen.
Acetoacetic ester derivatives 1a–g, their mono- and dialkyl-
substituted analogues 1h–k and 1l–o, respectively, func-
tionalized acetoacetic ester derivatives 1p–s and cyclic -
keto esters 1t–y were presented among them. The noneno-
lizable dialkylated derivatives 1h–k were added to the set
for checking the influence of possible enol formation as the

reaction occurs. Also, the set of functionalized acetoacetic
esters 1p–s were tested for the group-tolerance determina-
tion, and derivatives 1t–y to examine the impact of confor-
mational restriction (Figure 2).

These substrates were tested in deoxofluorination reac-
tion with SF4/HF system according to the aforementioned
optimized protocol for ethylacetoacetate (1a).19 The proce-
dure appeared to be suitable for most -keto esters except
for the substrates highlighted in boxes in Figure 2. Treat-
ment of compounds 1d, 1r, and 1s with SF4/HF led to com-
plex undefined mixture of products, the desired dehydro-
fluorinated compounds were not observed. The cyclopro-
pane derivative 1d probably decomposed via
cyclopropylmethyl/cyclobutyl cation rearrangement, which
we had observed during fluorinations earlier.20 Decomposi-
tion of 1r in the reaction conditions was unexpected due to
our previous successful experience with DAST fluorination
of TFA-protected amino ketones,18 while decomposition of
the substrate 1s was anticipated. According to our previous
expertise fluorination of compounds containing PhCH2O
fragment by SF4 led to debenzylation with subsequent un-
selective decomposition. It should be noted that compound
1w, bearing an ether fragment, also did not give the desired
product in the SF4/HF system. In this case the compound
having m/z [M+] = 286 in GC–MS and m/z [M + 1] = 287 in
positive mode in APCI HPLC MS was observed as a major
product, but we were not able to determine its structure
based on these results as well as on NMR data. Neverthe-
less, the product 1w was successfully deoxofluorinated by
SF4 in the absence of HF at 60 °C in 61% preparative yield,21

which was a rare exception to our procedure. The rate of de-
hydrofluorination in this case was less than 10%. Substrates
1e, 1j, and 1v also reacted unselectively under the opti-
mized conditions, but the corresponding deoxofluorinated
products were registered at about 10%, making the proce-

Scheme 1  The synthesis of ,-difluorocarboxylic acid
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dure nonpreparative. The results of deoxofluorination of -
keto esters 1 are summarized in Table 1. The preparative
yields obtained using the above-mentioned substrate set
are high (from 55–90%) and comparable for both enolizable

and nonenolizable keto esters. Considerable rate of dehy-
drofluorination was observed in the case of using sub-
strates 1u (up to 20%), 1c, 1h (up to 10%), and 1b, 1i (up to
5%).

Table 1  Yields of Deoxofluorination of -Keto Esters with Subsequent Hydrolysis to the Corresponding Carboxylic Acids

Fluorination Hydrolysis

Entry Substrate Product Scale 
(mol)a

Yield 
(%)

Protocol Bp 
(°C/mmHg)

Product Yield 
(%)

Protocol Bp (°C/mmHg)

 1 0.6 70 A1 126–127/760 78 A2 70–72/10

 2 0.3 82 A1 44–46/20 83 A2 77–78/10

 3 0.3 78 A1 67–69 / 20 84 A2 87–89/10

 4 0.9 75 A1 57–59 / 20 69 A2 85–88/10

 5 0.6 70 A1 35–37/20 74 A2 61–62/10

 6 0.3 81 A1 61–62/20 80 A2 77–80/20

 7 0.6 77 A1 77–72/20 80 A2 86–88/10

 8 0.6 73 A1 50–52/20 70 A2 71–72/10

 9 0.9 88 A1 65–66/20 82 B2 88–90/10

10 0.9 70 A1 55–56/20 69 B2 70–72/20

11 0.6 85 A1 75–76/20 88 B2 105–107/10

12 0.6 90 A1 58–59/0.3 88 B2 95–97/0.3b
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Table 1 (continued)

The reaction was scaled up to 50–150 g (0.3–0.9 mol) of
starting material from one synthetic run without changing
the protocol. Such amounts required operating with signifi-
cant quantity, up to 175 g, of SF4 for one run. These opera-
tions were performed in the special well-ventilated labora-
tory with strictly limited staff access due to safety reasons.
The staff always wear the personal-protection equipment
including single-filter, full-face masks during operation in
accordance with international safety regulations.22 The
damper technique applied for loading of SF4 into the auto-
clave was shown in Figure 3. The standardized damper
chambers were used, which contained 25±1 g of SF4 at at-
mospheric pressure. The excess of SF4, along with the other
gaseous byproducts, is vented from the autoclave through a
KOH solution after the reaction is complete.

All obtained ,-difluoroesters 2 were subjected to sub-
sequent hydrolysis into the corresponding acids. Taking
into account unsustainability of enolizable ,-difluo-
roesters to fluorine anion elimination,23 the acidic condi-

tions24 were chosen for hydrolysis. In the case of nonenoliz-
able ,-difluoroesters 2e,f and 2l–o more convenient alkali
hydrolysis was applied.25 The corresponding acids were ob-
tained in good preparative yields under both conditions
(Table 1).

The next milestone of the investigation was the elabora-
tion of an efficient method for the synthesis of Medicinal
chemistry relevant difluorinated cyclic amino acid deriva-
tives type 11 starting from readily available compounds
type 12 (Scheme 2). Earlier, this methodology was applied
only for the 3,3-difluoroproline derivative 11c. Recently,
the preparative deoxofluorination of the corresponding
precursor, where PG = Cbz and R = t-Bu, was described us-
ing DAST as a reagent.26 The approaches to derivatives of
amino acids 11b and 11c were also described based on an-
other methodology. The 3,3-difluoroisonipecotic acid de-
rivatives were obtained via multistep synthesis starting
from ethyl bromodifluoroacetate as CF2 moiety source.27 In
the case of 4,4-difluoro--proline the core was assembled

13 0.9 86 A1 46–47/0.3 67 A2 –c

14 0.6 48 A1d 95/10 73 A2d –c

15 0.6 85 A1 52–53/20 87 A2 99-101/10b

16 0.3 55 A1 56–57/20 84 A2 107–110/10b

17 0.6 61 B1 64–67/10 79 A2 91–92/0.3b

18 0.3 86 A1 67–68/20 90 B2 44–45/0.3b

19 0.3 91 A1 88–82/20 85 B2 62–63/0.3b

a Amount of starting -keto ester.
b Crystallized after cooling, mp (10o) 90–91 °C; mp (10t) 68–69 °C; mp (10u) 74–75 °C; mp (10w) 78–79°C; mp (10x) 72–73°C; mp (10y) 77–78°C.
c Solid compounds, crystallized from hexane, mp (10p) 162–163°C; mp (10q) 58–59°C.
d 3 equivalents of SF4 were used in step A1; 6 equivalents of HCl without formic acid were added in step A2.

Fluorination Hydrolysis

Entry Substrate Product Scale 
(mol)a

Yield 
(%)

Protocol Bp 
(°C/mmHg)

Product Yield 
(%)
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by [3+2] cycloaddition of azomethine ylide with benzyl 3,3-
difluoroacrylate.28

At first, we chose the NBn-protected compounds 12a–d
as potential substrates for deoxofluorination. These com-
pounds were examined in a standard protocol with SF4 in
HF. Among them substrates 12a–c gave the corresponding
difluoro derivatives 11a–c in good preparative yields (from
68–83% on 0.6 mol scale of starting materials). But com-
pound 12d unexpectedly gave dehydrofluorinated com-
pound 13d as the major product under the reaction condi-
tions according to 19F NMR and 1H NMR analysis of the reac-

tion mixture and the crude product (Scheme 2).
Unfortunately, all attempts to isolate the reactive com-
pound 13d in a pure state failed. The deprotected fluorinat-
ed amino acids 14 could be quantitatively hydrolyzed in
acidic conditions29 to the corresponding acids 16 as hydro-
chloric salts. It was illustrated by the synthesis of Bn-pro-
tected amino acids 16a,b. Amino acids 11a,b were formed
by catalytic hydrogenation of Bn-protected derivatives
16a,b at room temperature and 1 atm hydrogen pressure
over Pd on carbon in MeOH–H2O media30 as hydrochloric
salts. These compounds were easily transformed into Boc-

Figure 3  Equipment for SF4-based dioxofluorination. (a) Opened Hastelloy autoclave 1200 mL; (b) loading of SF4 to vacuum autoclave from the balloon 
through damper chamber; (c) releasing of the excess of SF4 and gaseous byproducts into KOH solution. 1 – vacuumed autoclave loaded with substrate 
and anhydrous HF; 2 – tank with liquid nitrogen; 3 – damper chamber filled with SF4; 4 – balloon with SF4; 5 – canister with 15% aqueous solution of KOH.

Scheme 2  The synthesis of gem-difluorinated cyclic amino acid derivatives
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protected derivatives 18a,b31 that are more convenient for
utilizing as building blocks in parallel synthesis in compari-
son with Bn-protected derivatives. The orthogonal benzyl
deprotection from the compound type 14 could be also ac-
complished by catalytic hydrogenation.32 It was demon-
strated by synthesis of the amino ester 15c. In the case of
4,4-difluoro--proline derivatives replacement of Bn pro-
tection group with TFA in substrate 19d changed the behav-
ior of deoxofluorination. The standard SF4/HF protocol gave
the desired difluoro derivative 20d in 71% preparative yield
on 80 g scale of the used starting material. TFA deprotection
by classical nucleophilic methodologies with such reagents
as NH2NH2, NH2OH, or NaOMe is incompatible with enoliz-
able ,-difluoroesters. Therefore, an alternative mild acidic
deprotection method was applied. It was found that ethan-
olic solution of anhydrous HCl, generated by addition of
acetyl chloride into EtOH,33 selectively cleaved TFA amide,
leaving the ester function intact.34 In the case of compound
20d the method led to amino ester 15d in 90% yield as hy-
drochloride (Scheme 2).

A preparative solution for substrate 1j and its analogues
was found. The ester group in these compounds could be
exchanged to a nitrile. Deoxofluorination of keto nitriles
21a, 21j, and 21t proceeded smoothly in SF4/HF system ac-
cording to protocol A1 at room temperature (Scheme 3).
The desired ,-difluoronitriles 22a, 22j, and 22t were
formed in moderate to good yields (46–78%) on 0.15–0.3
mol scale. The possibility of hydrolysis of such nitriles was
demonstrated on the intermediate 22j. The acid 10j was ob-
tained through acidic hydrolysis of nitrile 22j by H2SO4 at
90 °C35 in 74% yield.

Scheme 3  Deoxofluorination of -keto nitriles by SF4 in HF

Finally, the reaction of deoxofluorination of -keto es-
ters and -keto nitriles by SF4 in anhydrous HF media was
investigated. The scope and limitation of the reaction were
determined. Substrates having steric hindrance at the keto
group, bearing ArCH2O–, –NHTFA, and fragments capable of
cationic-like rearrangements, are out of the scope of the
procedure. The reaction was scaled up to 0.9 mol of starting
material using 1200 mL Hastelloy autoclave. Work with
such quantity of SF4 required a special technique and equip-
ment, which was also demonstrated. The promising build-

ing blocks for medicinal chemistry, -difluorinated acids,
were produced by hydrolysis of the appropriate esters on
100 g scale. Despite the serious difficulties of using toxic,
hazardous SF4 towards special lab space, equipment, per-
sonal protection, and staff skills, the elaborated methods
are substantially more efficient in comparison with multi-
step sequences based on less hazardous fluorine sources.
Moreover, the proposed protocol can be easily introduced
into the production cycle at industrial facilities that use SF4.
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J = 239.1 Hz). LC–MS (positive mode): m/z = 284 [M + H]+.
3,3-Difluorobutanenitrile (22a)
1H NMR (400 MHz, CDCl3):  = 2.95 (t, J = 11.0 Hz, 2 H), 1.78 (t,
J = 18.5, 3 H). 13C NMR (126 MHz, CDCl3):  = 119.4 (t, J = 243.8
Hz), 113.6 (t, J = 4.8 Hz), 28.3 (t, J = 40.2 Hz), 22.9 (t, J = 25.1 Hz).
19F NMR (376 MHz, CDCl3):  = –88.7.
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(21) Deoxofluorination Protocol B1
The keto ester 1 (1 equiv) was placed in a Hastelloy autoclave
(1200 mL), cooled with liquid nitrogen, vacuumed, and SF4 was
condensed into it (about 1.7 equiv). The autoclave was warmed
up to room temperature and stirred at 60 °C on a magnetic
stirrer for 48 h. Gaseous products were released, the solution
was poured from the autoclave onto ice, and the oil formed was
extracted with MTBE. The extracts were washed with aqueous
solution of Na2CO3 and dried. The residue was evaporated and
purified with potassium permanganate (as in protocol A) and
distilled. The bp and yields of products 2 are given in Table 1.
Representative Examples
Ethyl 3,3-Difluorobutanoate (2a)
1H NMR (500 MHz, CDCl3):  = 4.20 (qd, J = 7.2, 3.4 Hz, 2 H), 2.92
(td, J = 14.1, 3.3 Hz, 2 H), 1.78 (td, J = 18.8, 3.3 Hz, 3 H), 1.29 (td,
J = 7.2, 3.3 Hz, 3 H). 19F NMR (376 MHz, CDCl3):  = –87.0
Ethyl 4-Chloro-3,3-difluorobutanoate (2q)
1H NMR (400 MHz, CDCl3):  = 4.18 (q, J = 7.1 Hz, 2 H), 3.93 (t, J =
12.7 Hz, 2 H), 3.09 (t, J = 14.2 Hz, 2 H), 1.26 (t, J = 7.1 Hz, 3 H). 13C
NMR (126 MHz, CDCl3):  = 166.4 (t, J = 8.4 Hz), 119.5 (t, J =
244.4 Hz), 61.5, 43.6 (t, J = 33.4 Hz), 38.9 (t, J = 27.6 Hz), 14.0. 19F
NMR (376 MHz, CDCl3):  = –97.9. EIMS (70eV): m/z (%) = 186
[M – H]+ (1), 161 (15), 159 (49), 143 (30), 141 (100), 113 (24), 99
(14), 94 (15), 77 (17), 64 (15), 77 (17), 64 (150), 59 (11), 45 (14),
42 (12)
Ethyl 2,2-Difluorocyclohexanecarboxylate (2u)
1H NMR (400 MHz, CDCl3):  = 4.17 (qd, J = 7.2, 2.7 Hz, 2 H), 2.81
(dq, J = 19.3, 6.9 Hz, 1 H), 2.30–2.11 (m, 1 H), 1.89 (q, J = 6.9, 6.5
Hz, 2 H), 1.83–1.53 (m, 4 H), 1.46–1.30 (m, 1 H), 1.25 (t, J = 7.1
Hz, 3 H). 13C NMR (151 MHz, CDCl3):  = 169.8 (d, J = 6.1 Hz),
121.7 (dd, J = 246.9, 244.6 Hz), 60.9, 48.8 (t, J = 23.0 Hz), 33.2 (t,
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J = 23.0 Hz), 26.5 (t, J = 3.3 Hz), 22.3–22.2, 22.2, 14.1. 19F NMR
(376 MHz, CDCl3):  = –94.6 (d, J = 240.3 Hz). EIMS (70eV): m/z
(%) = 192 [M]+ (2), 172 (21), 147 (59), 145 (13), 100 (42), 99
(100), 98 (14), 97 (11), 85 (20), 80 (41), 77 (26), 72 (16), 55 (22).
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(24) Hydrolysis Protocol А2
A mixture of the ester 2 (1 equiv), formic acid (4 equiv), and 20%
hydrochloric acid (3 equiv of HCl) was stirred at 100°C with 10
cm Vigreux column for 2 days. The reaction mixture was satu-
rated with NaCl, and the product was extracted with dichloro-
methane (for the substance 2p, the precipitated product was fil-
tered off and washed with cold water). The extracts were dried,
evaporated, and distilled. The bp and yields of products 10 are
given in Table 1.
Representative Examples
3,3-Difluorobutanoic Acid (10a)
1H NMR (400 MHz, CDCl3):  = 9.70 (br, 1 H), 2.97 (t, J = 13.9 Hz,
2 H), 1.77 (t, J = 18.7 Hz, 3 H). 13C NMR (151 MHz, CDCl3):  =
173.2 (t, J = 7.8 Hz), 120.7 (t, J = 239.9 Hz), 42.9 (t, J = 29.3 Hz),
23.2 (t, J = 26.4 Hz). 19F NMR (376 MHz, CDCl3):  = –87.2. EIMS
(70eV): m/z (%) = 122 (1), 107 (12), 104 (21), 89 (41), 76 (12), 65
(100), 64 (11), 63 (10), 60 (62), 59 (23), 45 (44), 43 (14), 42 (23),
40 (12), 39 (10)
2,2-Difluorocyclopentanecarboxylic Acid (10t)
1H NMR (400 MHz, CDCl3):  = 11.20 (br, 1 H), 3.00–3.20 (m, 1
H), 2.40–2.00 (m, 4 H), 2.00–1.80 (m, 1 H), 1.80–1.60 (m, 1 H).
13C NMR (101 MHz, CDCl3):  = 175.8, 130.6 (t, J = 266.6 Hz),
51.4 (t, J = 24.1 Hz), 35.4 (t, J = 23.6 Hz), 26.3, 20.6. 19F NMR (376
MHz, CDCl3):  = –92.6 (d, J = 229.7 Hz), –100.8 (d, J = 229.7 Hz).
EIMS (70eV): m/z (%) = 150 [M]+ (1), 130 (7), 115 (11), 110 (13),
109 (17), 91 (10), 82 (14), 77 (21), 73 (100), 66 (13), 65 (11), 59
(11), 55 (33), 51 (14), 45 (15), 41 (20), 39 (20).

(25) Hydrolysis Protocol B2
A mixture of the ester 2 (1 equiv) and sodium hydroxide (1.5
equiv) in 50% aqueous ethanol (2 L per 1 mol) was boiled until
the reaction was completed (from 1 night to 3 days). The reac-
tion mixture was evaporated, acidified with hydrochloric acid,
and the product was extracted with dichloromethane. The
extracts were combined, dried, evaporated, and distilled. The bp
and yields of products 10 are given in Table 1.
Representative Examples
3,3-Difluoro-2,2-dimethylbutanoic Acid (10l)
1H NMR (400 MHz, CDCl3):  = 11.51 (br, 1 H), 1.71 (t, J = 19.2
Hz, 3 H), 1.35 (s, 6 H). 13C NMR (151 MHz, CDCl3):  = 179.8,
123.9 (t, J = 246.1 Hz), 49.7 (t, J = 24.7 Hz), 20.3 (t, J = 27.7 Hz),
20.0 (t, J = 4.2 Hz). 19F NMR (376 MHz, CDCl3):  = –98.1. EIMS
(70eV): m/z (%) = 154 [M + 2H]+ (1), 145 (1), 88 [M – CF2CH3]+

(94), 87 (25), 73 (100), 70 (31), 65 (49), 59 (17), 45 (16), 42 (11),
41 (23), 39 (15)
1-(1,1-Difluoroethyl)cyclopropanecarboxylic Acid (10m)
1H NMR (400 MHz, CDCl3):  = 11.07 (s, 1 H), 1.88 (t, J = 18.7 Hz,
3 H), 1.41–1.32 (m, 2 H), 1.35–1.26 (m, 2 H). 13C NMR (151 MHz,

CDCl3):  = 177.6, 120.8 (t, J = 240.4 Hz), 28.9 (t, J = 29.4 Hz),
22.9 (t, J = 28.3 Hz), 13.8 (t, J = 3.5 Hz). 19F NMR (376 MHz,
CDCl3):  = –94.7. LC–MS (negative mode): m/z = 149 [M – H]–.

(26) Doebelin, C.; He, Y.; Kamenecka, T. M. Tetrahedron Lett. 2016,
57, 5658.

(27) Surmont, R.; Verniest, G.; Thuring, J. W.; Macdonald, G.;
Deroose, F.; De Kimpe, N. J. Org. Chem. 2010, 75, 929.

(28) McAlpine, I.; Tran-Dubé, M.; Wang, F.; Scales, S.; Matthews, J.;
Collins, M. R.; Nair, S. K.; Nguyen, M.; Bian, J.; Alsina, L. M.; Sun,
J.; Zhong, J.; Warmus, J. S.; O’Neill, B. T. J. Org. Chem. 2015, 80,
7266.

(29) Hydrolysis Protocol C2
A mixture of the ester 14, acetic acid (2 mL per 1 g of ether) and
20% hydrochloric acid (2 mL per 1 g of ether) was stirred over-
night at 110 °C with 10 cm Vigreux column. The resulting
mixture was evaporated. The solid residue was washed with
MTBE to obtain hydrochloride of the acid 16; mp (16a·HCl) 199
°C (with decomposition); mp (16b·HCl) 200 °C (with decompo-
sition). 
Representative Examples
1-Benzyl-4,4-difluoropiperidine-3-carboxylic Acid Hydro-
chloride (16a·HCl) 
H NMR (400 MHz, DMSO-d6):  = 13.47 (s, 1 H), 12.13 (s, 1 H),
7.64 (dd, J = 6.7, 2.9 Hz, 2 H), 7.51–7.40 (m, 3 H), 4.41 (s, 2 H),
3.88–3.66 (m, 1 H), 3.54 (d, J = 12.8 Hz, 1 H), 3.37 (s, 1 H), 3.28 (t,
J = 12.7 Hz, 1 H), 3.16 (t, J = 12.4 Hz, 1 H), 2.72–2.52 (m, 1 H),
2.39 (t, J = 14.8 Hz, 1 H). 13C NMR (126 MHz, CDCl3):  = 167.3,
131.8, 130.2, 130.0, 129.3, 119.5 (t, J = 247.6 Hz), 58.8, 49.4,
48.0, 45.2, 31.2. 19F NMR (376 MHz, DMSO-d6):  = –98.9 (d, J =
237.1 Hz), –110.0 (d, J = 237.1 Hz). LC–MS (negative mode): m/z
= 254 [M – HCl – H]–

1-Benzyl-3,3-difluoropiperidine-4-carboxylic Acid Hydro-
chloride (16b·HCl)
1H NMR (400 MHz, DMSO-d6):  = 11.81 (br, 2 H), 7.63 (s, 2 H),
7.53–7.36 (m, 3 H), 4.55–4.17 (m, 2 H), 3.74–2.94 (m, 5 H), 2.18
(s, 2 H). 13C NMR (151 MHz, DMSO-d6):  = 169.0, 132.2, 130.1,
129.4, 129.2, 118.4 (t, J = 246.2 Hz), 59.4, 53.1, 49.6, 45.0,
22.4. 19F NMR (376 MHz, DMSO-d6):  = –100.9 (d, J = 243.0
Hz), –106.3 (d, J = 255.7 Hz). LC–MS (positive mode): m/z = 256
[M – HCl + H]+.

(30) Debenzylation Protocol A3
10% Pd on carbon (0.1g for 1 g of 16) was added to the solution
of a compound 16 in MeOH–H2O (2:1, 10 mL of mixture for 1g
of 16), and the mixture was hydrogenated at room temperature
and atmospheric pressure until the reaction was completed
(check by NMR). The catalyst was filtered off, and the filtrate
was evaporated dry. The crude product was washed by MTBE–
acetone mixture affording the desired compounds 11, which
were then treated by a saturated solution of HCl in dioxane and
isolated in pure form as hydrochloride; mp (11a·HCl) 185 °C;
mp (11b·HCl) 188 °C.
Representative Examples 
4,4-Difluoropiperidine-3-carboxylic Acid Hydrochloride
(11a·HCl)
1H NMR (400 MHz, D2O):  = 3.56–3.18 (m, 5 H), 2.48–2.12 (m, 2
H); NH, OH not observed due to exchange. 13C NMR (151 MHz,
D2O):  = 170.2, 118.2 (t, J = 247.6 Hz), 45.4 (t, J = 23.8 Hz), 42.7,
41.0, 29.7 (t, J = 25.3 Hz). 19F NMR (376 MHz, D2O):  = –98.9 (d,
J = 244.7 Hz), –106.7 (d, J = 247.6 Hz). LC–MS (positive mode):
m/z = 166 [M – HCl + H]+.
3,3-Difluoropiperidine-4-carboxylic Acid Hydrochloride
(11b·HCl)
1H NMR (400 MHz, DMSO-d6):  = 10.56 (br, 3 H), 3.64 (dt, J =
© 2020. Thieme. All rights reserved. Synlett 2020, 31, 565–574
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17.1, 9.3 Hz, 1 H), 3.47 (dd, J = 27.4, 12.9 Hz, 1 H), 3.38–3.22 (m,
1 H), 3.18 (d, J = 12.6 Hz, 1 H), 3.01 (t, J = 12.1 Hz, 1 H), 2.12 (d, J
= 14.9 Hz, 1 H), 1.99 (q, J = 12.4, 11.9 Hz, 1 H). 13C NMR (126
MHz, DMSO-d6):  = 169.4, 118.3 (t, J = 247.4 Hz), 46.2 (dd, J =
36.1, 28.6 Hz), 45.2 (t, J = 21.1 Hz), 41.0, 22.9 (d, J = 5.2 Hz). 19F
NMR (376 MHz, DMSO-d6):  = –101.4 (d, J = 251.5 Hz), –108.0 (d,
J = 251.9 Hz). LC–MS (positive mode): m/z = 166 [M – HCl + H]+.

(31) Boc-Protection Protocol A4
The Boc2O (1.2 equiv) was added to the stirred mixture of com-
pound 11 (1 equiv), NaHCO3 (3.5 equiv) in THF–H2O (1:1, 10 mL
of mixture for 1g of 11). The resulting suspension was stirred at
room temperature overnight. The THF was distilled at rotor
evaporator (20 mmHg, 40 °C). The suspension formed was fil-
tered, and the mother liquor was extracted with MTBE. The
water phase was acidified with citric acid, the product was
extracted with EtOAc. The combined extracts were dried with
Na2SO4 and evaporated to give the desired Boc-protected
product 18; mp (18a) 185 °C; mp (18b) 188 °C.
Representative Examples
4,4-Difluoropiperidine-3-carboxylic Acid Hydrochloride
(11a·HCl)
1-(tert-butoxycarbonyl)-4,4-difluoropiperidine-3-carbox-
ylic acid (18a)
1H NMR (400 MHz, DMSO-d6): δ = 12.95 (s, 1 H), 3.86–3.41 (m,
4 H), 3.05–2.90 (m, 1 H), 2.36–2.17 (m, 1 H), 1.91 (q, J = 9.8, 6.1
Hz, 1 H), 1.39 (s, 9 H). 13C NMR (126 MHz, DMSO-d6): δ = 169.5,
153.8, 125.5–117.2 (m), 79.9, 47.6, 44.0, 43.2, 32.1, 28.3. 19F
NMR (376 MHz, DMSO-d6): δ = 95.9 (dm, J = 238.8 Hz), –100.1
(dm, J = 242.1 Hz), –103.3 (dm, J = 245.8 Hz). LCMS, negative
mode, m/z: 264 [M–H]–. 
1-(tert-butoxycarbonyl)-3,3-difluoropiperidine-4-carbox-
ylic acid (18b)
1H NMR (400 MHz, DMSO-d6): δ = 12.86 (s, 1 H), 4.02 (s, 1 H),
3.77 (d, J = 13.8 Hz, 1 H), 3.45–3.37 (m, 1 H), 3.18–2.98 (m, 2 H),
1.89 (dt, J = 13.6, 4.1 Hz, 1 H), 1.80–1.66 (m, 1 H), 1.40 (s, 9 H).
13C NMR (126 MHz, chloroform-d): δ = 170.2 (d, J = 2.4 Hz),
154.2, 119.1 (t, J = 249.7 Hz), 80.1, 49.2, 48.2, 46.8 (t, J = 21.5
Hz), 28.4, 25.7. 19F NMR (376 MHz, DMSO-d6): δ = –103.3 (dd,
J = 239.2, 172.0 Hz), -112.5 (dd, J = 239.6, 101.1 Hz). LCMS, neg-
ative mode, m/z: 264 [M–H]–.

(32) Debenzylation Protocol D2
10% Pd on carbon (0.1g for 1 g of 14c) was added to the solution
of compound 14c (as hydrochloride) in EtOH (10 mL for 1g of
14c), and the mixture was hydrogenated at room temperature
and atmospheric pressure until the consumption of hydrogen
ceased. The catalyst was filtered off, and the filtrate was evapo-
rated and dried. The crude product was washed by MTBE
affording the desired compound 15c. Then crude compound 15c

was treated by a saturated solution of HCl in dioxane and iso-
lated in pure form as hydrochloride; mp (15c·HCl) 95 °C.
Representative Example
Ethyl 3,3-Difluoropyrrolidine-2-carboxylate Hydrochloride
(15c·HCl) 
1H NMR (400 MHz, DMSO-d6):  = 10.76 (s, 2 H), 4.94 (dd, J =
17.4, 9.2 Hz, 1 H), 4.44–4.19 (m, 2 H), 3.55–3.36 (m, 2 H), 2.78–
2.52 (m, 2 H), 1.25 (t, J = 7.1 Hz, 3 H). 13C NMR (126 MHz,
DMSO-d6):  = 163.3 (d, J = 2.7 Hz), 126.9 (dd, J = 257.5, 250.4
Hz), 63.4, 62.7 (dd, J = 33.1, 28.7 Hz), 42.3 (d, J = 5.8 Hz), 33.4 (t,
J = 24.1 Hz), 14.3. 19F NMR (376 MHz, DMSO-d6):  = –98.3 (d, J =
234.8 Hz), –100.7 (d, J = 234.8 Hz). LC–MS (positive mode): m/z
= 180 [M – HCl + H]+.

(33) Bogolubsky, A. V.; Ryabukhin, S. V.; Stetsenko, S. V.; Chupryna,
A. A.; Volochnyuk, D. M.; Tolmachev, A. A. J. Comb. Chem. 2007,
9, 661.

(34) TFA-Deprotection Protocol E2
A solution of 20d (1 equiv) in 1 M HCl in EtOH (prepared from
AcCl (4 equiv) and EtOH) was stirred at 40 °C for 4 h. The solu-
tion was evaporated dry, and the crude product was washed by
MTBE affording the desired compound 15d. Then crude com-
pound 15d was treated by a saturated solution of HCl in dioxane
and isolated in pure form as hydrochloride; mp (15d·HCl) 116 °C.
Representative Example
Ethyl 4,4-Difluoro-pyrrolidine-3-carboxylate Hydrochloride
(15d·HCl)
1H NMR (400 MHz, DMSO-d6):  = 10.40 (s, 2 H), 4.28–4.11 (m, 2
H), 4.00–3.83 (m, 1 H), 3.84–3.66 (m, 3 H), 3.55 (dd, J = 12.1,
10.1 Hz, 1 H), 1.22 (t, J = 7.1 Hz, 3 H). 13C NMR (151 MHz, DMSO-
d6):  = 165.6, 126.2 (t, J = 253.2 Hz), 62.2, 50.4 (t, J = 32.5 Hz),
49.0 (t, J = 22.8 Hz), 44.8, 14.4. 19F NMR (376 MHz, DMSO-d6):
 = –102.3. LC–MS (positive mode): m/z = 180 [M – HCl + H]+.

(35) Hydrolysis Protocol F2
A mixture of nitrile 22j (1 mol) and conc sulfuric acid (3 mL per
1 g of nitrile) was heated to 90 °C and stirred for 1 h, diluted
with water (10 mL per 1 g of nitrile), and boiled overnight. After
cooling, the product was extracted with dichloromethane, the
extracts were dried, evaporated, and distilled; bp (10j) 91–92
°C/0.3 mmHg.
Representative Example
3,3-Difluoro-2-phenylbutanoic Acid (10j)
1H NMR (400 MHz, CDCl3):  = 10.56 (br, 1 H), 7.43 (dd, J = 6.7,
3.0 Hz, 2 H), 7.37 (d, J = 3.6 Hz, 3 H), 4.15 (t, J = 12.2 Hz, 1 H),
1.65 (t, J = 19.0 Hz, 3 H). 13C NMR (151 MHz, CDCl3):  = 174.5 (d,
J = 7.0 Hz), 131.4 (t, J = 3.5 Hz), 129.5, 128.8, 128.7, 122.04 (t, J =
244.6 Hz), 58.4 (t, J = 26.9 Hz), 21.6 (t, J = 26.3 Hz). 19F NMR (376
MHz, CDCl3):  = –89.7 (d, J = 248.0 Hz), –92.4 (d, J = 248.0 Hz).
LCMS (negative mode): m/z = 199 [M – H]–.
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