Synthesis 2022; 54(02): 334-340
DOI: 10.1055/s-0037-1610784
feature

Late-Stage C–H Arylation of Azepinoindole via Pd/Cu Catalysis: A Step Efficient and Convergent Synthesis of Rucaparib

,
,
Dirk De Vos
The research leading to these results has received funding from the NMBP-01-2016 Program of the European Union’s Horizon 2020 Framework Program H2020/2014-2020/ under grant agreement no (720996). DDV is grateful to KU Leuven for support in the frame of the CASAS Metusalem project and to Research Foundation Flanders (FWO) for project funding (G0781118 N, G0D0518 N). Mass spectrometry was made possible with the support of the Hercules Foundation of the Flemish Government (grant 20100225–7).


Abstract

The C–H arylation of indoles holds the promise to shorten synthetic routes in the production of pharmaceuticals. However, late-stage C–H activation reactions often rely on the presence of protecting groups or stoichiometric metal additives. The regiospecific C–H arylation of a highly functionalized azepino[5,3,4-cd]indole scaffold lacking directing groups via Pd(II) and Cu(II) co-catalysis is reported. The direct C–H coupling was demonstrated in the convergent synthesis of rucaparib, an FDA approved anticancer drug.



Publication History

Received: 06 July 2021

Accepted after revision: 06 August 2021

Article published online:
17 September 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Miller CP, Collini MD, Tran BD, Harris HA, Kharode YP, Marzolf JT, Moran RA, Henderson RA, Bender RH. W, Unwalla RJ, Greenberger LM, Yardley JP, Abou-Gharbia MA, Lyttle CR, Komm BS. J. Med. Chem. 2001; 44: 1654
  • 2 Corsini A, Fumagalli R, Paoletti R, Bernini F. Drugs Today 1996; 32: 13
  • 3 Thomas HD, Calabrese CR, Batey MA, Canan S, Hostomsky Z, Kyle S, Maegley KA, Newell DR, Skalitzky D, Wang L.-Z, Webber SE, Curtin NJ. Mol. Cancer Ther. 2007; 6: 945
    • 4a Lindsay AC. Nat. Prod. Rep. 2018; 35: 1347
    • 4b Singh AK, Raj V, Saha S. Eur. J. Med. Chem. 2017; 142: 244
    • 4c Klein-Júnior LC, Cretton S, Vander Heyden Y, Gasper AL, Nejad-Ebrahimi S, Christen P, Henriques AT. J. Nat. Prod. 2020; 83: 852
    • 5a Alberico D, Scott ME, Lautens M. Chem Rev. 2007; 107: 174
    • 5b Sandtorv AH. Adv. Synth. Catal. 2015; 357: 2403
    • 5c Joucla L, Djakovitch L. Adv. Synth. Catal. 2009; 351: 673
    • 6a Akita Y, Itagaki Y, Takizawa S, Ohta A. Chem. Pharm. Bull. 1989; 37: 1477
    • 6b Lane BS, Sames D. Org. Lett. 2004; 6: 2897
    • 6c Nadres ET, Lazareva A, Daugulis O. J. Org. Chem. 2011; 76: 471
    • 6d Touré BB, Lane BS, Sames D. Org. Lett. 2006; 8: 1979
    • 6e Liégault B, Petrov I, Gorelsky SI, Fagnou K. J. Org. Chem. 2010; 75: 1047
    • 7a Ackermann L. Chem. Rev. 2011; 111: 1315
    • 7b Beckers I, Krasniqi B, Kumar P, Escudero D, De Vos D. ACS Catal. 2021; 11: 2435
  • 8 Lebrasseur N, Larrosa I. J. Am. Chem. Soc. 2008; 130: 2926
    • 9a Yang S.-D, Sun C.-L, Fang Z, Li B.-J, Li Y.-Z, Shi Z.-J. Angew. Chem. Int. Ed. 2008; 47: 1473
    • 9b Zhao J, Zhang Y, Cheng K. J. Org. Chem. 2008; 73: 7428
    • 9c Deprez NR, Kalyani D, Krause A, Sanford MS. J. Am. Chem. Soc. 2006; 128: 4972
  • 10 Wang X, Gribkov DV, Sames D. J. Org. Chem. 2007; 72: 1476
    • 11a Bressy C, Alberico D, Lautens M. J. Am. Chem. Soc. 2005; 127: 13148
    • 11b Gao Y, Zhu W, Yin L, Dong B, Fu J, Ye Z, Xue F, Jiang C. Tetrahedron Lett. 2017; 58: 2213
  • 12 Lane BS, Brown MA, Sames D. J. Am. Chem. Soc. 2005; 127: 8050
  • 13 Mohr Y, Renom-Carrasco M, Demarcy C, Quadrelli EA, Camp C, Wisser FM, Clot E, Thieuleux C, Canivet J. ACS Catal. 2020; 10: 2713
  • 14 Bellina F, Calandri C, Cauteruccio S, Rossi R. Tetrahedron 2007; 63: 1970
    • 15a Hughes DL. Org. Process Res. Dev. 2017; 21: 1227
    • 15b Gillmore AT, Badland M, Crook CL, Castro NM, Critcher DJ, Fussell SJ, Jones KJ, Jones MC, Kougoulos E, Mathew JS, McMillan L, Pearce JE, Rawlinson FL, Sherlock AE, Walton R. Org. Process Res. Dev. 2012; 16: 1897