Total Synthesis of Astellatol: A Three-Decade Synthetic Puzzle

N. Zhao
S. Xie
H. Huang
J. Xu*
Southern University of Science and Technology, P. R. of China

Key transformations:
1) A TMS group dominated facial selective hydrogenation
2) An intramolecular Pauson–Khand reaction formed the hydrindane scaffold
3) An unprecedented SmI₂-mediated reductive radical 1,6-addition forged the cyclobutane
4) A strategic oxidation/reduction unravelled extremely challenging late-stage trans-hydrindane synthesis

The Direct Pd-Catalyzed β-C(sp³)–H Activation of Carboxylic Acids

A. Uttry
M. van Gemmeren*
Westfälische Wilhelms-Universität-Münster, Germany

- R = H, Alkyl, NR₂, access to unnatural amino acids
- Non-quaternary acids
- Direct β C(sp³)–H Activation of aliphatic carboxylic acids

\[\text{Synlett} \ 2018, \ 29, \ 1933–1936\]

DOI: 10.1055/s-0037-1610149

\[\text{Synpacts} \ 1937\]

DOI: 10.1055/s-0037-1610150
Proline-Catalyzed Asymmetric α-Amination in the Synthesis of Bioactive Molecules

P. Kumar*
B. M. Sharma
Organic Chemistry Division,
CSIR-National Chemical Laboratory, India

Guanidines as Reagents in Proton-Coupled Electron-Transfer Reactions and Redox Catalysts

H.-J. Himmel*
Ruprecht-Karls-Universität Heidelberg, Germany

Synthesis of Polycyclic Frameworks through Iron-Catalyzed Intramolecular [5+2] Cycloaddition

Y. Liu
Y. Zhang
X. Wang
S. Fu*
B. Liu*
Sichuan University, P. R. of China
Exploration of the Role of Double Schiff Bases as Catalytic Intermediates in the Knoevenagel Reaction of Furanic Aldehydes: Mechanistic Considerations

J. van Schijndel*
L. A. Canalle
D. Molendijk
J. Meuldijk
Avans University of Applied Science, The Netherlands

Efficient Preparation of Cyclic α-Alkylidene β-Oxo Imides by Using a Flow Microreactor System

K. Komuro
A. Nagaki
H. Shimoda
M. Uwamori
J.-i. Yoshida
M. Nakada*
Waseda University, Japan

Photophysical and Electrochemical Properties and Anticancer Activities of Porphyrin-Cored Fluorenodendrimers Synthesized by Click Chemistry

D. Anandkumar
P. Rajakumar*
University of Madras, India
A ‘Turn-on’ Fluorescence Glycosyl Dithiocarbamate Probe for Selective Fluoride Sensing in Aqueous Medium

R. Das*
B. Mishra
B. Mukhopadhyay*
Indian Institute of Science Education and Research (IISER) Kolkata, India

Chiral VAPOL Imidodiphosphoric Acid-Catalyzed Asymmetric Vinylogous Mannich Reaction for the Synthesis of Butenolides

T. Zhou
J. Gao
G. Liu
X. Guan
D. An
S. Zhang*
G. Zhang*
Jilin University, P. R. of China

A Synthesis of Novel Perinaphthenones from Acetylenic Esters and Acenaphthoquinone–Malononitrile Adduct in the Presence of Triphenylphosphine

I. Yavari*
A. Khajeh-Khezri
M. R. Halvagar
Tarbiat Modares University, Iran
The Acceleration of the Rearrangement of α-Hydroxy Aldimines by Lewis or Brønsted Acids

X. Zhang
Y. Dai
W. D. Wulff*
Michigan State University, USA

A Convenient Synthesis of Functionalized 2,3-Diazaspiro[4.4]nona-1,6,8-trienes

I. Yavari*
J. Sheykhahmadi
S. Bahemat
M. R. Halvagar
Tarbiat Modares University, Iran

Rhodium(III)-Catalyzed C–H Activation/Alkylation of Diazabicyclic Olefins with Aryl Ketones: Facile Synthesis of Functionalized Cyclopentenes

P. V. Santhini
G. Gopalan
A. S. Smrithy
K. V. Radhakrishnan*
National Institute for Interdisciplinary Science and Technology (CSIR), India
Synthesis of Thiophosphates by Coupling of Phosphates with Bunte Salts under Mild Conditions

C. Min
R. Zhang
Q. Liu
S. Lin*
Z. Yan*
Nanchang University, P. R. of China

R_1S=SO_3Na + \text{NaBr (10 mol%)} \rightarrow R_1S=SO_3R_2

\text{R}_1 = \text{Aryl, Alkyl} \quad \text{R}_2 = \text{Alkoxy, Aryl}

H_2O_2 (2.0 equiv)
CH_3CN (1 mL)
HOOAc (2.0 equiv)

19 examples (40–92%)
mild conditions
metal-free catalysis
H_2O_2 as a green oxidant

Synthesis of Unnatural Arundines Using a Magnetically Reusable Copper Ferrite Catalyst

P. T. Ha
O. T. K. Nguyen
K. D. Huynh
T. T. Nguyen
N. T. S. Phan*
HCMC University of Technology, Vietnam

\text{CuFe}_2\text{O}_4 (15 mol%)

\text{R} = \text{Me, halide, MeO, TMS, Bpin, pyrazoles}
\text{R}_1 = \text{H, Me, allyl, Bin, Ar}
\text{R}_2 = \text{H, Me, Ph}

17 examples
38–88%

* reusable heterogeneous catalyst

New Cyano-Group-Containing 1,3-Oxaselenoles: Nucleophilic Substitution of a Cyano Group with Rearrangement

A. V. Kachanov*
A. V. Zamaraev
A. V. Gerasimenko
K. V. Maslov
O. Yu. Slabko
V. A. Kaminskii
Far Eastern Federal University, Russian Federation

\text{Ar} = \text{Ph, 4-MeOC_6H_4}

2\text{SeO}_2 \cdot \text{A} \rightarrow 2\text{H}_2\text{O} \rightarrow \text{HCN}

\text{R} = \text{H, NH}_2, \text{CH}_2\text{Ph}, 4-\text{Tol, 4-MeOC_6H_4}

77–81%
2 examples
37–61%
10 examples
An Efficient Direct Access to Carbamates from Alcohols and TosMIC Mediated by Iodine in DMSO

N. Pogaku
P. R. Krishna
Y. L. Prapurna*
CSIR-Indian Institute of Chemical Technology, India

![Chemical diagram](image)

- **R** = alkyl, aryl, heteroaryl, etc.
- **TosMIC**
- **DMSO, rt**
- **I₂ (0.6 equiv)**
- **15–20 min**

Carbamates
- **37 examples**
- **78–94% yield**

Mild reaction conditions
- **Easily available starting materials**
- **Shorter reaction times**

Letters

2039

Length Matters: One Additional Methylene Group in a Reactant is Able to Affect the Reactivity Pattern and Significantly Increase the Product Yield

E. V. Stepanova
N. M. Podvalnyy
P. I. Abpronina
L. O. Kononov*
N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Russian Federation

![Chemical diagram](image)

- **SnCl₄**
- **CH₂Cl₂**
- **–25 °C**
- **n = 2**
- **85%**
- **n oligomers (m ≥ 2)**

Letters

2043

A Domino Process for the Sustainable Synthesis of Quinazolin-4(3H)-ones with Direct Chemo- and Regioselective Bromination

E. Sheikh*
M. Adib*
R. Yazzaf
M. Jahani
M. Ghavidel
University of Tehran, Iran

![Chemical diagram](image)

- **8 examples**
- **75–95%**
- **R = Bn, CH₂-2-ClC₆H₄, 4-Tol, 4-EtC₆H₄, i-Pr, Bu, (CH₂)₄Me**

Letters

2046
Chloramine Salt Mediated Oxidative Halogenation of Terminal Alkynes with KI or NaBr: Practical Synthesis of 1-Bromoalkynes and 1-Iodoalkynes

X. Liu
G. Chen
C. Li
P. Liu
Zunyi Medical University, P. R. of China

R — H
chloramine salt
KL, MeCN
or NaBr, MeCN/H₂O

R — X
X = I, Br
27 examples
up to 98% yield

• Practical approach
• Simple operation
• Gram-scale synthesis
• General access to 1-bromoalkynes and 1-iodoalkynes

Ligand-Free CuI-Catalyzed Chemoselective S-Arylation of 2-Mercaptobenzimidazole with Aryl Iodides

B. Y.-H. Tan
Y.-C. Teo
Nanyang Technological University, Singapore

R₁ = NH₂, NO₂,
OMe, OEt etc.
R₂ = F, Cl, Br,
OMe, CF₃, NO₂,
acetyl etc.

K₃PO₄ (1.5 equiv)
DMSO (0.2 mL)
100 °C, 24 h

32 examples
up to 92% yield

Nitrile Hydration Reaction Using Copper Iodide/Cesium Carbonate/DBU in Nitromethane–Water

J. Kuwabara
Y. Sawada
M. Yoshimatsu
Gifu University, Japan

ArH⁻C≡N
CulMeNO₂–H₂O
(CuI (5 mol%), K₂PO₄ (1.5 equiv))

ArH⁻C—N
C₃H₆O₂DBU
(0.5 equiv/2 equiv)

total 30 examples
up to 90% yield, 9 examples
70–89% yield, 8 examples
selective amide formation
scalable up to 1.0 g (10 mmol)
useful for nitrile hydration
of the ester or carbamate
groups
A De Novo Synthetic Route to 1,2,3,4-Tetrahydroisoquinoline Derivatives

R. A. Ábrahámi
S. Fuster
F. Fülöp*
L. Kiss*

University of Szeged, Hungary

Cu-Catalyzed Conjugate Addition of Grignard Reagents to Thiochromones: An Enantioselective Pathway for Accessing 2-Alkylthiochromanones

S. Luo
L. Meng
Q. Yang*
J. (J.) Wang*

Southern University of Science and Technology, P. R. of China
Guizhou Normal University, P. R. of China

Transition-Metal-Free Synthesis of Thiosulfonates through Radical Coupling Reaction

G. Zhou
X.-D. Xu
G.-P. Chen
W.-T. Wei*
Z. Guo*

Ningbo University, P. R. of China
Hunan University, P. R. of China