Protodepalladation as a Strategic Elementary Step in Catalysis

M. L. O’Duill
K. M. Engle*
The Scripps Research Institute, USA

Advances in Catalytic Aerobic Oxidations by Activation of Dioxgen-Monoxygenase Enzymes and Biomimetics

M. Petsi
A. L. Zografos*
Aristotle University of Thessaloniki, Greece
Stereoselective Synthesis of Tetrahydrofuran Lignans

D. Soorukram*
M. Pohmakotr
C. Kuhakarn
V. Reutrakul
Mahidol University, Thailand

2,5-diaryltetrahydrofurans
2-aryl-4-benzyltetrahydrofurans
3,4-dibenzyltetrahydrofurans

Direct Trifluoromethylthiolation Reactions Involving Radical Processes

A.-L. Barthelemy
E. Magnier
G. Dagousset*
Université de Versailles-Saint-Quentin, France

Macrocyclic Hosts in Asymmetric Phase-Transfer Catalyzed Reactions

R. Schettini
M. Sicignano
F. De Riccardis
I. Izzo
G. Della Sala*
Università degli Studi di Salerno, Italy
Enantioselective Synthesis of 4-Amino-3-hydroxybenzopyran Flavanol Derivatives from Chalcones

Facile incorporation of stereochemical and appendage diversity for biological evaluation

An Azirine Strategy for the Synthesis of Alkyl 4-Amino-5-(trifluoromethyl)-1H-pyrrole-2-carboxylates

A-Iodosuccinimide-Mediated Oxidative Coupling of Indoles and Phenol: A Synthetic Study toward the Benzofuroindoline Moiety of Bipleiophylline
Synthesis 2018, 50, 4829–4836
DOI: 10.1055/s-0037-1610181

Divergent Reactivity of Indole-Tethered Ynones with Silver(I) and Gold(I) Catalysts: A Combined Synthetic and Computational Study

J. T. Liddon
J. A. Rossi-Ashton
A. K. Clarke
J. M. Lynam
R. J. Taylor
W. P. Unsworth
University of York, UK

Sequential Pyridine Dearomatization–Mizoroki–Heck Cyclization for the Construction of Fused (Dihydropyrido)isoindolinone Ring Systems

M. S. Joshi
F. C. Pigge
University of Iowa, USA

Microwave-Assisted Syntheses of Thiophene-Based Ionic Liquids: Structural Design and Optimization

M. A. Schiel
C. E. Domini
A. B. Chopa
G. F. Silbestri
Universidad Nacional del Sur (UNS)-CONICET, Argentina

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
Efficient Synthesis of Sulfinate Esters and Sulfinamides via Activated Esters of \(p \)-Toluenesulfonic Acid

S. H. Gafur
S. L. Waggoner
E. Jacobsen
C. G. Hamaker
S. R. Hitchcock*
Illinois State University, USA

One-Pot Telescoped Synthesis of Thiazole Derivatives from \(\beta \)-Keto Esters and Thioureas Promoted by Tribromoisocyanuric Acid

V. S. C. de Andrade
M. C. S. de Mattos*
Universidade Federal do Rio de Janeiro, Brazil

Large-Scale Flow Photochemical Synthesis of Functionalized trans-Cyclooctenes Using Sulfonated Silica Gel

A. Darko*
S. J. Boyd
J. M. Fox*
University of Delaware, USA
Synthesis of Spiro Barbiturates and Meldrum’s Acid Derivatives via a [2+2+2] Cyclotrimerization

S. Kotha*
G. Sreevani
Indian Institute of Technology-Bombay, Powai, India

First Example of C–H Functionalisation in the 6-Nitroazolo[5,1-c]triazine Series

E. B. Gorbunov*
E. N. Ulomsky
E. K. Voinkov
R. A. Drokin
D. N. Lyapustin
G. L. Rusinov
V. L. Rusinov
V. N. Charushin
O. N. Chupakhin
Postovsky Institute of Organic Synthesis, Russian Federation

Diversity-Oriented Synthesis via Catalyst-Free Addition of Ketones to [e]-Fused 1H-Pyrrole-2,3-diones

E. E. Stepanova*
S. O. Kasatkina
M. V. Dmitriev
A. N. Maslivets*
Perm State University, Russian Federation
Synthesis of Functionalized 5-Amino-3(2H)-furanones via Base-Catalyzed Ring-Cleavage/Recyclization of 4-Cyano-3(2H)-furanones in the Presence of Water

O. G. Volostnykh
O. A. Shemyakina*
A. V. Stepanov
I. A. Ushakov
T. N. Borodina
A. E. Favorsky Irkutsk Institute of Chemistry, Russian Federation

19 examples
up to 99% yield

R¹ = Alk, Ar, HetAr; R² = Me; R³ = Me, Et; R²–R³ = (CH₂)₅

Chromium-Catalyzed Asymmetric Dearomatization–Addition Reactions of Halomethyloxazoles and Indoles

Z. Wang
H. Ji
W.-M. He*
Y. Xiong
G. Zhang*
Hunan University of Science and Engineering, P. R. of China
Shanghai Institute of Organic Chemistry, P. R. of China

9 examples
up to 70% yield
dr up to 99:1
ee up to 95%

6 examples
up to 69% yield
dr up to 99:1
ee up to 95%

1 example
63% yield
dr 99:1
ee 90%

Dynamic Kinetic Resolution of Phosphinic Acid Derivatives via Nucleophilic Substitution at Phosphorus Center

D. Strzelecka
O. Bał
P. Borowski*
M. Stankevičiūtė
Marie Curie-Skłodowska University in Lublin, Poland

54%
dr 82:18

DKR-like process based on different reactivity of each enantiomer
Visible-Light-Driven Oxidative Mono- and Dibromination of Benzylic sp³ C–H Bonds with Potassium Bromide/Oxone at Room Temperature

\[
\begin{align*}
\text{hv (0.5 W LED)} & \rightarrow \text{Ozone (y equiv)} \\
\text{KBr (x equiv)} & \rightarrow \text{KF}
\end{align*}
\]

F. V. Singh*
S. R. Mangaonkar
VIT Institute, India

Hypervalent Iodine(III)-Catalyzed Synthesis of 2-Arylbenzofurans

C. A. P. Mengersen
C. A. van der Velden
University of the Free State, South Africa

Multigram Synthesis of C₄/C₅ 3,3-Difluorocyclobutyl-Substituted Building Blocks

K. P. Melnykov
D. S. Granat
D. M. Volochnyuk
S. V. Ryabukhin*
O. O. Grygorenko
Enamine Ltd., Ukraine
Taras Shevchenko National University of Kyiv, Ukraine
One-Pot Synthesis of Tetraazamacrocyclic Complexes from the Arnold Salt

M. Woźniak

Institute of Chemistry, Polish Academy of Sciences, Poland

Synthesis 2018, 50, 4958–4962
DOI: 10.1055/s-0037-1609915

Reaction Details

- **Reagents**: M^{2+} salt, NaOH, NH$_3$, NH$_2$ (M = Cu or Ni)
- **Condition**: one-pot in water
- **Yield**: yields up to 86%
- **Scalability**: scalable
- **Time**: short reaction and work-up time

Illustration

![Synthesis of Tetraazamacrocyclic Complexes](image)

Synthesis of Indole-Dihydroisoquinoline Sulfonyl Ureas via Three-Component Reactions

S. E. Pearson

S. M. Fillery
K. Goldberg
J. E. Demeritt
J. Eden
J. Finlayson
A. Patel

AstraZeneca, UK

Synthesis 2018, 50, 4963–4981
DOI: 10.1055/s-0037-1610223

Reaction Details

- **Reagents**: DIPEA, toluene
- **Concentration of reaction mixture**: concentration of reaction mixture then 50 °C, 1–8 h
- **Yield**: 24–74% yield

Illustration

![Synthesis of Indole-Dihydroisoquinoline Sulfonyl Ureas](image)

Synthesis of 1-Carboxamide-1,4-dihydropyridazines via Recyclization of Hydroxypyrrolines with Semicarbazides

D. A. Shabalin

E. E. Ivanova
A. V. Kuzmin
M. Yu. Dvorko
E. Yu. Schmidt
B. A. Trofimov

A. E. Favorsky Irkutsk Institute of Chemistry, Russian Federation

Synthesis 2018, 50, 4982–4988
DOI: 10.1055/s-0037-1610239

Reaction Details

- **Reagents**: NH$_3$, HCl, H$_2$O, TFA
- **Condition**: reflux, 2–4 h
- **Yield**: 18–86%

Illustration

![Synthesis of 1-Carboxamide-1,4-dihydropyridazines](image)