Synlett 2018; 29(18): 2390-2395
DOI: 10.1055/s-0037-1611061
letter
© Georg Thieme Verlag Stuttgart · New York

Straightforward Synthesis of Triester-Substituted Pyrrolizidines by a Three-Component Reaction of β,γ-Unsaturated α-Keto Esters, Proline, and Maleates

Lian-Mei Chen*
a   College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. of China
,
Zhi-Hui Liu
b   College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. of China   Email: Chenlianmei845@163.com   Email: kangtairan@sina.com
,
Xu-Feng Nie
b   College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. of China   Email: Chenlianmei845@163.com   Email: kangtairan@sina.com
,
Xiao-Qiang Guo
a   College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. of China
,
Tai-Ran Kang*
a   College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. of China
b   College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. of China   Email: Chenlianmei845@163.com   Email: kangtairan@sina.com
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (No. 21672172) and the Science and Technology Department of Sichuan Province (No. 2017TD0008).
Further Information

Publication History

Received: 05 July 2018

Accepted after revision: 18 September 2018

Publication Date:
11 October 2018 (online)


Abstract

A three-component reaction of β,γ-unsaturated α-keto esters, proline, and dialkyl maleates has been developed. This reaction provides pyrrolizidine derivatives containing three ester groups and a styrenyl group, as well as a quaternary center, in moderate to good yields and with good to excellent diastereoselectivities.

Supporting Information

 
  • References and Note

    • 1a Hartmann T. Witte L. In Alkaloids: Chemical and Biological Perspectives . Vol. 9. Pelletier SW. Pergamon; Oxford: 1995: 155
    • 1b Daly JW. J. Nat. Prod. 1998; 61: 162
    • 1c Garraffo HM. Spande TF. Daly JW. Baldessari A. Gros EG. J. Nat. Prod. 1993; 56: 357
    • 1d Becker DP. Flynn DL. Moormann AE. Nosal R. Villamil CI. Loeffler R. Gullikson GW. Moummi C. Yang D.-C. J. Med. Chem. 2006; 49: 1125
    • 1e Robertson J. Stevens K. Nat. Prod. Rep. 2017; 34: 62
  • 2 Lim AD. Codelli JA. Reisman SE. Chem. Sci. 2013; 4: 650
  • 3 Asano N. Kuroi H. Ikeda K. Kizu H. Kameda Y. Kato A. Adachi I. Watson AA. Nash RJ. Fleet GW. J. Tetrahedron: Asymmetry 2000; 11: 1
  • 4 Nash RJ. Fellows LE. Dring JV. Fleet GW. J. Derome AE. Hamor TA. Scofield AM. Watkin DJ. Tetrahedron Lett. 1988; 29: 2487
  • 5 Nash RJ. Thomas PI. Waigh RD. Fleet GW. J. Wormald MR. Lilley PM. de Q. Watkin DJ. Tetrahedron Lett. 1994; 35: 7849
  • 6 Asano N. Nash RJ. Molyneux RJ. Fleet GW. J. Tetrahedron: Asymmetry 2000; 11: 1645
  • 7 Brambilla M. Davies SG. Fletcher AM. Roberts PM. Thomson JE. Tetrahedron 2014; 70: 204

    • For some recent reviews of multicomponent reactions, see:
    • 9a Dömling A. Chem. Rev. 2006; 106: 17
    • 9b Ramón DJ. Yus M. Angew. Chem. Int. Ed. 2005; 44: 1602
    • 9c Bienaymé H. Hulme C. Oddon G. Schmitt P. Chem. Eur. J. 2000; 6: 3321
    • 9d Dömling A. Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 9e Zhu J. Eur. J. Org. Chem. 2003; 1133

      For selected reviews on azomethine ylides, see:
    • 10a Moyano A. Rios R. Chem. Rev. 2011; 111: 4703
    • 10b Albrecht Ł. Jiang H. Jørgensen KA. Angew. Chem. Int. Ed. 2011; 50: 8492
    • 10c Maroto EE. Izquierdo M. Reboredo S. Marco-Martínez J. Filippone S. Martín N. Acc. Chem. Res. 2014; 47: 2660
    • 10d Hashimoto T. Maruoka K. Chem. Rev. 2015; 115: 5366
    • 10e Nájera C. Sansano JM. J. Organomet. Chem. 2014; 771: 78-92
    • 10f Kissane M. Maguire AR. Chem. Soc. Rev. 2010; 39: 845
    • 10g Adrio J. Carretero JC. Chem. Commun. 2014; 50: 12434

    • For selected examples, see:
    • 10h Li M. Gong F.-M. Zhao L.-R. Eur. J. Org. Chem. 2011; 3482
    • 10i Malathi K. Kanchithalaivan S. Ranjith KR. Almansour AI. Suresh KR. Arumugam N. Tetrahedron Lett. 2015; 56: 6132
    • 10j Rani MA. Kumar SK. Malathi K. Muthu M. Almansour AI. Kumar RS. Kumar RR. ACS Comb. Sci. 2017; 19: 308
    • 10k Wen R. Cen L. Ma Y. Wang J. Zhu S. Tetrahedron Lett. 2018; 59: 1686
    • 11a Vvedensky VY. Ivanov YV. Kysil V. Williams C. Tkachenko S. Kiselyov A. Khvat AV. Ivachtchenko AV. Tetrahedron Lett. 2005; 46: 3953
    • 11b Qin Y. Lv J. Luo S. Tetrahedron Lett. 2014; 55: 551
    • 11c Seidel D. Acc. Chem. Res. 2015; 48: 317
  • 12 Kang Y. Richers MT. Sawickia CH. Seidel D. Chem. Commun. 2015; 51: 10648
  • 13 Kang T.-R. Chen Y. He L. Ye J. Liu Q.-Z. Tetrahedron Lett. 2012; 53: 2552

    • For selected reviews on azomethine ylide electrocyclizations, see:
    • 14a Pinho e Melo TM. V. D. Eur. J. Org. Chem. 2006; 2873
    • 14b Nyerges M. Tóth J. Groundwater PW. Synlett 2008; 1269
    • 14c Anaç O. Güngör F. Ş. Tetrahedron 2010; 66: 5931
  • 15 Trimethyl 3-[(E)-2-Phenylvinyl]hexahydro-1H-pyrrolizine-1,2,3-tricarboxylate (4a); Typical Procedure The β,γ-unsaturated keto ester 1a (0.1 mmol) and dimethyl maleate (3a; 0.3 mmol) were added to a solution of rac-proline (2; 0.12 mmol) in DMF (1 mL), and mixture was stirred at 80 °C until the reaction was complete (TLC). The mixture was then cooled to r.t., H2O (5 mL) and EtOAc (5 mL) were added, and the mixture was well stirred for 5 min. The organic layer was separated, and the aqueous layer was extracted with EtOAc (2 × 10 mL). The combined organic phase was washed with brine, dried (Na2SO4), and concentrated under reduced pressure. The residue was purified by flash column chromatography [silica gel, PE–EtOAc (4:1)] to give 4a as an oil; yield: 33 mg (85%). 1H NMR (400 MHz, CDCl3): δ = 7.26–7.29 (m, 2 H), 7.22–7.24 (m, 2 H), 7.19–7.21 (m, 1 H), 6.45 (d, J = 16.4 Hz, 1 H), 6.08 (d, J = 16.4 Hz, 1 H), 4.25 (d, J = 11.4 Hz, 1 H), 3.78 (s, 3 H), 3.65 (s, 3 H), 3.60–3.64 (m, 1 H), 3.53 (s, 3 H), 3.15–3.20 (m, 1 H), 2.99–3.06 (m, 1 H), 2.73–2.78 (m, 1 H), 1.97–2.03 (m, 1 H), 1.77–1.84 (m, 2 H), 1.64–1.72 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 172.2, 171.2, 136.2, 133.9, 128.8, 128.2, 126.6, 125.0, 76.7, 73.8, 66.8, 56.6, 52.6, 52.2, 52.2, 51.1, 47.3, 31.4, 1.02. ESI-HRMS: m/z [M + H]+ calcd for C21H26NO6: 388.1682; found: 388.1755.
  • 16 CCDC 1472726 contains the supplementary crystallographic data for compound 4f. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.