C. CHEN, P. M. PFLÜGER, P. CHEN, G. LIU* (SHANGHAI INSTITUTE OF ORGANIC CHEMISTRY, P. R. OF CHINA AND WILHELM’S-UNIVERSITÄT MÜNSTER, GERMANY)
Palladium(II)-Catalyzed Enantioselective Aminotrifluoromethoxylation of Unactivated Alkenes using CsOCF₃ as a Trifluoromethoxide Source

Palladium-Catalyzed Enantioselective Aminotrifluoromethoxylation of Alkenes

Significance: The authors reported an asymmetric palladium(II)-catalyzed aminotrifluoromethoxylation of unactivated alkenes leading to a variety of enantioenriched piperidines in good yields.

Comment: Remarkably, the method was used to prepare a derivative of pridinol, an antiparkinsonian and anticholinergic drug, in three steps and 62% overall yield. The mild reaction conditions and the use of CsOCF₃ salt make the method practical.

Selected examples:

- **PG = Ts, DMPs, TMPs, PMPs, o-Ns, o-Ns, Bz**
- **R¹, R² = Alk, Ar, ether, amine, alkene**

<table>
<thead>
<tr>
<th>R¹</th>
<th>R²</th>
<th>PG</th>
<th>Ligand</th>
<th>CsOCF₃ (4.0 equiv)</th>
<th>SelectFluor® (1.2 equiv)</th>
<th>CH₂Cl₂–MeCN (5:1)</th>
<th>–30 °C, 36 h</th>
<th>Up to 97% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et</td>
<td>Et</td>
<td>DMPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76% yield, 89% ee</td>
</tr>
<tr>
<td>NHPG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76% yield, 89% ee</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76% yield, 89% ee</td>
</tr>
</tbody>
</table>

Synthetic application:

- **57% yield, 96% ee**
- **5 steps**
- **pseudonorharman derivative (62% yield, 96% ee)**

SYNFACTS Contributors: Paul Knochel, Juri Skotnitzki
Synfacts 2019, 15(05), 6505 Published online: 15.04.2019
DOI: 10.1055/s-0037-1611516; Reg-No.: P04819SF

©Georg Thieme Verlag Stuttgart · New York