Synthesis 2019; 51(12): 2491-2505
DOI: 10.1055/s-0037-1611524
special topic
© Georg Thieme Verlag Stuttgart · New York

Ruthenium-Catalyzed Selective Reduction of Carboxylic Esters and Carboxamides

Yongyun Zhou
a   YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming 650504, P. R. of China   Email: adams.bmf@hotmail.com
,
a   YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming 650504, P. R. of China   Email: adams.bmf@hotmail.com
,
a   YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming 650504, P. R. of China   Email: adams.bmf@hotmail.com
,
Lijin Xu*
b   Department of Chemistry, Renmin University of China, Beijing 100872, P. R. of China   Email: 20050062@ruc.edu.cn
› Author Affiliations
We are grateful to the National Natural Science Foundation of China (21572198, 21372258) and the Applied Basic Research Foundation of Yunnan Province (2017FA004, 2018FB021), and Yunnan Provincial Key Laboratory Construction Plan Funding of Universities for their financial support.
Further Information

Publication History

Received: 08 March 2019

Accepted after revision: 29 March 2019

Publication Date:
30 April 2019 (online)


Published as part of the Special Topic Ruthenium in Organic Synthesis

Abstract

Amines and alcohols are important classes of building blocks in organic synthesis. The synthesis of these compounds has been a topic of interest. A straightforward method for their synthesis is the reduction of esters and amides to alcohols and amines, respectively. Various transition-metal catalysts have been developed for the homogeneous hydrogenation of esters and amides to alcohols and amines. In this review, an overview of the ruthenium-catalyzed selective hydrogenation of esters and amides is provided.

1 General Introduction

2 Ru-Catalyzed Reduction of Esters

3 Ru-Catalyzed Selective Reduction of Amides

4 Conclusions

 
  • References

    • 1a Fernandez E. In Modern Reduction Methods. Andersson P, Munslow IM. Wiley-VCH; Weinheim: 2008
    • 1b Arnott GE. Reduction of Carboxylic Acids and their Derivatives to Alcohols, Ethers, and Amines. In Comprehensive Organic Synthesis, Vol. 8. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 390-398
  • 2 Seyden-Penne J. Reductions by the Alumino and Borohydrides in Organic Synthesis, 2nd ed. Wiley-VCH; New York: 1997
    • 3a Marciniec B. Hydrosilylation: A Comprehensive Review on Recent Advances. Springer Science; Dordrecht: 2009
    • 3b Addis D, Das S, Junge K, Beller M. Angew. Chem. Int. Ed. 2011; 50: 6004
    • 3c Volkov A, Tinnis F, Stagbrand T, Trillo P, Adolfsson H. Chem. Soc. Rev. 2016; 45: 6685
    • 3d Li B, Sortais JB, Darcel C. RSC Adv. 2016; 6: 57603
    • 4a Dub PA, Ikariya T. ACS Catal. 2012; 2: 1718
    • 4b Clarke ML. Catal. Sci. Technol. 2012; 2: 2418
    • 4c Werkmeister S, Junge K, Beller M. Org. Process Res. Dev. 2014; 18: 289
    • 4d Smith AM, Whyman R. Chem. Rev. 2014; 114: 5477
    • 4e Chardon A, Morisset E, Rouyden J, Blanchet J. Synthesis 2018; 50: 984
    • 5a Ito J, Nishiyama H. Tetrahedron Lett. 2014; 55: 3133
    • 5b Wang D, Astruc D. Chem. Rev. 2015; 115: 6621
    • 5c Wei Y, Wu X, Wang C, Xiao J. Catal. Today 2015; 247: 104
    • 5d He Y.-M, Fan Q.-H. ChemCatChem 2015; 7: 398
    • 5e Foubelo F, Nájera C, Yus M. Tetrahedron: Asymmetry 2015; 26: 769
    • 6a Lee S.-H, Nikonov GI. ChemCatChem 2015; 7: 107
    • 6b Dubey A, Khaskin E. ACS Catal. 2016; 6: 3998
    • 7a Beller M, Bolm C. Transition Metals for Organic Synthesis, 2nd ed. Wiley-VCH; Weinheim: 2004
    • 7b Murahashi S.-I. Ruthenium in Organic Synthesis. Wiley-VCH; Weinheim: 2004
  • 8 Matsubara K, Iura T, Maki T, Nagashima H. J. Org. Chem. 2002; 67: 4985
    • 9a Grey RA, Pez GP, Wallo A, Corsi J. J. Chem. Soc., Chem. Commun. 1980; 783
    • 9b Grey RA, Pez GP, Wallo A. J. Am. Chem. Soc. 1981; 103: 7536
    • 9c Matteoli U, Blanchi M, Menchi G, Prediani P, Piacenti F. J. Mol. Catal. 1984; 22: 353
    • 9d Matteoli U, Bianchi M, Menchi G, Frediani P, Piacenti F. J. Mol. Catal. 1985; 29: 269
    • 9e Matteoli U, Menchi G, Bianchi M, Piacenti F. J. Organomet. Chem. 1986; 299: 233
    • 9f Matteoli U, Menchi G, Bianchi M, Piacenti F, Ianelli S, Nardelli M. J. Organomet. Chem. 1995; 498: 177
    • 10a Teunissen HT, Elsevier C. Chem. Commun. 1997; 667
    • 10b Teunissen HT. Chem. Commun. 1998; 1367
    • 10c van Engelen MC, Teunissen HT, de Vries JG, Elsevier CJ. J. Mol. Catal. A: Chem. 2003; 206: 185
    • 10d Geilen FM. A, Engendahl B, Hölscher M, Klankermayer JR, Leitner W. J. Am. Chem. Soc. 2011; 133: 14349
    • 10e Furst MR. L, Le Goff R, Quinzler D, Mecking F, Botting CH, Cole-Hamilton DJ. Green Chem. 2012; 14: 472
  • 11 Zhang J, Leitus G, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2006; 45: 1113
    • 12a Saudan LA, Saudan C, Becieux C, Wyss P. Angew. Chem. Int. Ed. 2007; 46: 7473
    • 12b Kuriyama W, Ino Y, Ogata O, Sayo N, Saito T. Adv. Synth. Catal. 2010; 352: 92
    • 12c Zhang J, Balaraman E, Leitus G, Milstein D. Organometallics 2011; 30: 5716
    • 12d Fogler E, Balaraman E, Ben-David Y, Leitus G, Shimon LJ. W, Milstein D. Organometallics 2011; 30: 3826
    • 12e Balaraman E, Gunanathan C, Zhang J, Shimon LJ. W, Milstein D. Nat. Chem. 2011; 3: 609
    • 12f Sun YS, Koehler C, Tan RY, Annibale VT, Song DT. Chem. Commun. 2011; 47: 8349
    • 12g Kuriyama W, Matsumoto T, Ogata O, Ino Y, Aoki K, Tanaka S, Ishida K, Kobayashi T, Sayo N, Saito T. Org. Process Res. Dev. 2012; 16: 166
    • 12h Spasyuk D, Smith S, Gusev DG. Angew. Chem. Int. Ed. 2012; 51: 2772
    • 12i Spasyuk D, Smith S, Gusev DG. Angew. Chem. Int. Ed. 2013; 52: 2538
    • 12j Otsuka T, Ishii A, Dub PA, Ikariya T. J. Am. Chem. Soc. 2013; 135: 9600
    • 12k Li W, Xie J.-H, Yuan M.-L, Zhou Q.-L. Green Chem. 2014; 16: 4081
    • 12l Tan X, Wang Y, Liu Y, Wang F, Shi L, Lee K.-H, Lin Z, Lv H, Zhanfg X. Org. Lett. 2015; 17: 454
    • 12m Tan X, Wang Q, Liu Y, Wang F, Lv H, Zhang X. Chem. Commun. 2015; 51: 12193
    • 12n Filonenko GA, Aguila MJ. B, Schulpen EN, van Putten R, Wiecko J, Muller C, Lefort L, Hensen EJ. M, Pidko EA. J. Am. Chem. Soc. 2015; 137: 7620
    • 12o Ogata O, Nakayama Y, Nara H, Fujiwhara M, Kayaki Y. Org. Lett. 2016; 18: 3894
    • 12p Wang Z, Chen X, Liu B, Liu Q.-B, Solan GA, Yang X, Sun W-H. Catal. Sci. Technol. 2017; 7: 1297
    • 12q Ito M, Ootsuka T, Watari R, Shiibashi A, Himizu A, Ikariya T. J. Am. Chem. Soc. 2011; 133: 4240
    • 13a Motoyama Y, Mitsui K, Ishida T, Nagashima H. J. Am. Chem. Soc. 2005; 127: 13150
    • 13b Sasakuma H, Motoyama Y, Nagashima H. Chem. Commun. 2007; 4916
    • 14a Balaraman E, Gnanaprakasam B, Shimon LJ. W, Milstein D. J. Am. Chem. Soc. 2010; 132: 16765
    • 14b John JM, Bergens SH. Angew. Chem. Int. Ed. 2011; 50: 10377
    • 14c Miura T, Held IE, Oishi S, Naruto M, Saito S. Tetrahedron Lett. 2013; 54: 2674
    • 14d Kita Y, Higuchi T, Mashima K. Chem. Commun. 2014; 50: 11211
    • 14e John JM, Loorthuraja R, Antoniuk E, Bergens SH. Catal. Sci. Technol. 2015; 5: 1181
    • 14f Cabrero-Antonino JR, Alberico E, Drexler H.-J, Baumann W, Junge K, Junge H, Beller M. ACS Catal. 2016; 6: 47
    • 14g Shi L, Tan X, Long J, Xiong X, Yang S, Xue P, Lv H, Zhang X. Chem. Eur. J. 2017; 23: 546
    • 14h Wang Z, Li Y, Liu Q.-B, Solan GA, Ma Y, Sun W.-H. ChemCatChem 2017; 9: 4275
    • 14i Miura T, Naruto M, Toda K, Shimomura T, Saito S. Sci. Rep. 2017; 7: 1586
    • 14j Rasu L, John JM, Stephenson E, Endean R, Kalapugama S, Clement R, Bergens SH. J. Am. Chem. Soc. 2017; 139: 3065
    • 14k Chen J, Wang J, Tu T. Chem. Asian J. 2018; 13: 2559
    • 15a Magro AA. N, Eastham GR, Cole-Hamilton DJ. Chem. Commun. 2007; 43: 3154
    • 15b Magro AA. N, Eastham GR, Cole-Hamilton DJ. Chem. Commun. 2012; 48: 12249
    • 15c Coetzee J, Dodds DL, Klankermayer J, Brosinski S, Leitner W, Slawin AM. Z, Cole-Hamilton DJ. Chem. Eur. J. 2013; 19: 11039
    • 15d Cabrero-Antonino JR, Alberico E, Junge K, Junge H, Beller M. Chem. Sci. 2016; 7: 3432
    • 15e Meuresch M, Westhues S, Leitner W, Klankermayer J. Angew. Chem. Int. Ed. 2016; 55: 1392
    • 15f Yuan M.-L, Xie J.-H, Zhou Q.-L. ChemCatChem 2016; 8: 3036