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Abstract The metal-free reduction of nitroarenes to aniline derivatives
was accomplished in a short time by using a benzothiazoline as the hy-
drogen donor in combination with a Brønsted acid. An enantioselective
synthesis of 2-arylquinolines was achieved by using 1-aryl-3-(2-nitro-
phenyl)propan-1-ones as starting materials and a combination of a
benzothiazoline and a chiral phosphoric acid.

Key words benzothiazolines, phosphoric acids, isoquinolines, nitro-
arenes, anilines, reduction

Aniline is a fundamental motif, frequently found in
pharmaceuticals, natural compounds, and building blocks.
It is also an important building block for organic synthesis.1
A conventional method for the synthesis of aniline involves
the reduction of aryl nitroarenes by using metals.2 The Bé-
champ reduction, which uses tin or zinc in the presence of a
Brønsted acid at high temperature, is extensively em-
ployed.3 Alternatively, transition-metal-catalyzed reduc-
tions of nitroarenes with hydrogen gas are used under rela-
tively mild reaction conditions. Palladium on carbon is a
widely used catalyst in reductions performed in the labora-
tory and industry because it presents benefits with regards
to cost and handling.4 However, the reduction using palladi-
um is sometimes hampered by such issues as residuals,
flammability, and chemoselectivity. The reduction of ni-
troarenes by using such organic reductants as trichlorosi-
lane5 or phenyl(2-pyridyl)methanol6 has been developed.
Recently, Uozumi and co-workers reported a reduction that
used diboronic acid and water.7

We have reported an enantioselective transfer hydroge-
nation of ketimines, in which we used a benzothiazoline
(2,3-dihydro-1,3-benzothiazole) as the hydrogen donor in

combination with a chiral phosphoric acid.8,9 Benzothiazo-
lines proved to be effective for the transfer hydrogenation
of C=N bonds in a range of ketimines. To expand the utility
of benzothiazolines, we set our sights on the reduction of
nitroarenes. Here we describe a rapid metal-free reduction
of nitroarenes that uses a combination of a benzothiazoline
and a Brønsted acid. Furthermore, we applied this reaction
to the enantioselective synthesis of 2-arylquinolines, starting
from 1-aryl-3-(2-nitrophenyl)propan-1-ones (Scheme 1).

Scheme 1  Reduction of nitroarenes
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acid (CSA) as a Brønsted acid (Scheme 2). Gratifyingly, ani-
line 3a was obtained in 44% yield, accompanied by the cor-
responding N-benzylamine 4aa in 19% yield. We already
knew that the hydrolysis and condensation of benzothiazo-
lines and benzaldehydes occur under these reaction condi-
tions. We therefore believed that 4aa was formed by the re-
duction of imine 5aa, derived from 3a and 4-cyanobenzal-
dehyde.

In order to suppress the hydrolysis of the benzothiazo-
line 2a and to increase the yield of 3a, we added molecular
sieves (MS), which had a pronounced effect; the addition of
MS 4Å suppressed the formation of the benzylamine 4aa

and gave aniline 3a in high yield (Table 1, entries 1–3). Next,
we explored the effects of the Brønsted acid and of various
2-substituents on the benzothiazoline. A long reaction time
was required in the absence of a Brønsted acid (entry 4).
The 2-substituent on the benzothiazoline did not affect the
yield (entries 5–7). During the investigations, we had diffi-
culties purifying the aniline after the reaction, because an
excess of benzothiazole 6 (Ar = Ph) was generated and the
separation of the desired product 3a from 6 (Ar = Ph) was
not a trivial issue. We surmised that the introduction of a
carboxy group onto the benzothiazoline 2 might increase
its polarity and facilitate separation. In addition, we expect-

Scheme 2  Reduction of nitroarenes and the formation of N-benzylamine 4aa
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Table 1  Effects of Molecular Sieves and Various Substituents on the Benzothiazolinea

Entry H donor MS Time (h) Yield (%) of 3a Yield (%) of 4

1 2a MS 3Å 24 43 0

2 2a MS 4Å 24 86 5

3 2a MS 5Å 24 52 27

4b 2a MS 4Å 48 88 <8

5 2b MS 4Å 19 84 15

6 2c MS 4Å 24 87 10

7 2d MS 4Å 10.5 75 <38

8b 2e MS 4Å 0.5 98 -

9 2e MS 4Å 0.5 97 -

10 7 MS 4Å 20 23 -
a Reaction conditions: 1a (0.080 mmol), H donor (0.32 mmol), CSA (0.008 mmol), MS (100 mg), toluene (0.80 mL).
b Without CSA.
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ed that the benzothiazoline bearing a carboxy group 2e
might function as a Brønsted acid instead of CSA. We there-
fore attempted to perform the reaction with 2e in the ab-
sence of CSA (entries 8 and 9). As expected, benzothiazole
6e was readily removed from the crude mixture by filtra-
tion with dichloromethane. Gratifyingly, the use of 2e ac-
celerated the reaction remarkably and improved the yield of
3a to 98% in 0.5 hours. We also examined the utility of the
Hantzsch ester (7) as a hydrogen donor in place of a benzo-
thiazoline, but this gave 3a in low yield (entry 10).10 Benzo-
thiazoline 2e was therefore found to be the most suitable
hydrogen donor for the present reduction.

Having clarified the optimal reaction conditions, we in-
vestigated the substrate scope. Nitroarenes bearing elec-
tron-withdrawing groups, such as an ester, nitrile, or ketone
group, gave the desired anilines 3b–d in excellent yields
(Scheme 3). Bromo- and iodo(nitro)benzenes provided the
corresponding anilines 3e–i in good yields, except for 2-
bromo-1-nitrobenzene. 4-Methoxy and 4-(benzyloxy)-1-
nitrobenzenes gave the desired anilines 3m and 3n in mod-
erate yields, because benzylamines 4ma and 4na were also
formed. The reduction was completed in 0.5 hours for all
substrates. Aliphatic nitro compounds, nitrobenzenes bear-
ing vinyl groups, and trans--nitrostyrene were not suit-
able substrates for this reduction, and the corresponding
anilines were not obtained.

Scheme 3  Substrate scope of nitroarenes

We hypothesized that the reduction proceeds by a radi-
cal pathway. 2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO)
and 2,6-di-tert-butyl-4-methylphenol (BHT) were added to
the reaction mixture as radical scavengers. The addition of
TEMPO suppressed the reduction completely, and 96% of 1a

was recovered. On the other hand, amine 3a was obtained
in 85% yield when BHT was added (Scheme 4). The latter re-
sult did not agree with our hypothesis, so we are exploring
other reaction pathways.

Scheme 4  Mechanistic study

The present reduction of nitroarenes was applied in a
tandem reaction to synthesize 2-substituted chiral quino-
line derivatives (Scheme 5).11 The tandem reaction consists
of (I) reduction of a 1-aryl-3-(2-nitrophenyl)propan-1-one
9, (II) imine formation by intramolecular cyclization, and
(III) asymmetric reduction by a chiral phosphoric acid and a
benzothiazoline.12

Scheme 5  Tandem reaction

We optimized the reaction conditions to furnish the de-
sired 2-arylquinolines 10a–c in good yields and with excel-
lent enantioselectivities by the combined use of benzothi-
azoline 2f and chiral phosphoric acid 8 (Scheme 6).13

In summary, we have developed a reduction of ni-
troarenes by using a benzothiazoline in the presence of a
Brønsted acid. The reduction with a benzothiazoline bear-
ing a carboxy group was completed in a short time. Selec-
tive reduction without use of metal reagents was achieved.
A tandem reaction with a chiral phosphoric acid and a ben-
zothiazoline gave 2-aryltetrahydroquinoline derivatives
with excellent enantioselectivities.
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crude mixture was filtered through a Celite pad and extracted
with EtOAc (×3). The organic extracts were combined, washed
with brine, dried (Na2SO4), and concentrated in vacuo. The
residue was purified by preparative TLC.
2-Phenyl-1,2,3,4-tetrahydroquinoline (10a)
White solid; yield: 13 mg (60%, 92% ee); mp 52–54 °C; []D

24 –42
(c 0.75, CHCl3). 1H NMR (400 MHz, CDCl3):  = 1.94–2.05 (m, 1
H), 2.09–2.15 (m, 1 H), 2.74 (dt, J = 4.8, 16.4 Hz, 1 H), 2.93 (ddd,
J = 5.6, 10.8, 16.4 Hz, 1 H), 4.04 (br s, 1 H), 4.43 (dd, J = 3.4, 9.2
Hz, 1 H), 6.53 (d, J = 8.4 Hz, 1 H), 6.65 (t, J = 7.6 Hz, 1 H), 6.99–
7.02 (m, 2 H), 7.24–7.40 (m, 5 H). 13C NMR (100 MHz, CDCl3):
 = 26.4, 31.0, 56.3, 114.0, 117.2, 120.9, 126.6, 126.9, 127.5,
128.6, 129.3, 144.7, 144.8.

Scheme 6  Asymmetric synthesis of 2-substituted quinolines
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