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Abstract An α-CF3 amide underwent direct asymmetric Mannich-type
reaction to isatin imines in the presence of a chiral catalyst comprising a
soft Lewis acid Cu(I), a chiral bisphosphine ligand, and Barton’s base.
The Mannich adduct was converted in one step into a unique tricycle
bearing a trifluoromethylated chiral center and an α-tertiary amine
moiety.
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Organofluorine compounds generally exhibit distinctive
chemical properties compared to their corresponding non-
fluorinated analogues owing to the strong C–F bond and
high electronegativity of fluorine.1 The altered attributes
are often beneficial for medicinal and agrochemical appli-
cations.2 Therefore, the incorporation of fluorine and per-
fluoroalkyl groups such as CF3 into organic molecules has
been a topic of the intensive research.3 In addition to fluori-
nated aromatics, recent effort has also been dedicated to
the preparation of fluorine-containing aliphatic compounds
in enantioenriched form.4 Two strategies exist for this pur-
pose: fluorination/fluoroalkylation and building block ap-
proaches. Given the broad utility of enolate-based chemical
transformations, α-CF3 enolates would seem one of the
most ideal building blocks for the construction of a trifluo-
romethylated stereogenic carbon. Nevertheless, only limit-
ed chemistry has been explored with this class of nucleo-
philes due to their notorious instability associated with the
high aptitude for β-fluoride elimination from the corre-
sponding metal enolates (Scheme 1, a).5,6

As a part of our research program in direct enolization
chemistry,7 we have recently devised a chelated enolate
strategy to tame otherwise unstable α-CF3 metal enolates
(Scheme 1, b).8 The designed pronucleophile9 contains a 7-
azaindoline amide as a bidentate chelating unit that pre-
vents unfavorable metal–fluorine interactions. The thus
generated α-CF3 enolate has proven effective in the con-
struction of CF3-containing stereogenic carbons in a wide
range of Cu(I)-catalyzed asymmetric transformations.10 The
applications have, however, been limited to the construc-
tion of trisubstituted stereocenters at the β-position of the
amide carbonyl group.11,12 Facile Mannich addition of the α-
CF3 amide to Boc-aldimines8 prompted us to examine acti-
vated ketimines as potential reaction partners. Herein, we
report the successful implementation of this strategy for

Scheme 1  (a) Known decomposition pathway for α-CF3 metal eno-
lates. (b) Our chelated amide strategy.
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the preparation of tetrasubstituted carbons by means of a
direct catalytic asymmetric Mannich-type reaction to isatin
imines. 13

Our experience with 7-azaindoline amides has estab-
lished a combined soft Lewis acid/Brønsted base system
comprising Cu(I)/chiral bisphosphine ligand/Barton’s base
as a particularly effective catalyst for direct enolization
chemistry.8,14 A recent systematic study has also found that
the Ph-BPE ligand exhibits consistently high catalytic com-
petency for a broad range of α-substituents of the amides
including N3, Cl, and alkyl groups, but not fluoroalkyl
groups such as CF3; biaryl-type phosphine ligands are pre-
ferred for the α-CF3 amide.15 With these factors in mind,

our optimization studies for the Mannich-type reaction of
amide 2 to isatin imine 1a commenced with screening vari-
ous biaryl-type ligands (Table 1). A quick examination re-
vealed that the desired product was indeed formed in the
presence of 5 mol% Cu(I)/chiral biaryl ligand complex, al-
though the enantioselectivities were low to moderate (Ta-
ble 1, entries 1–4). Hence, we turned our attention to differ-
ent ligand backbones, and surprisingly, Ph-BPE (L8) was
found to perform the best among the ligands evaluated (Ta-
ble 1, entries 5–8). The catalyst loading was reduced to as
little as 1 mol% without sacrificing the reactivity and selec-
tivities (Table 1, entry 9).

Table 1  Optimization Studiesa

Entry Ligand x (mol%) y (mol%) Yield (%)b drb ee (%)c

1 L1 5 5 93  91:9 –69

2 L2 5 5 70  60:40  21

3 L3 5 5 90  92:8 –49

4 L4 5 5 80  90:10 –23

5 L5 5 5 59  89:11 –95

6 L6 5 5 95  94:6 –70

7d L7 5 5 88  88:12  31

8d L8 5 5 98 >95:5  99

9d L8 1 2 98 >95:5  99

a Reaction conditions: 1a (0.10 mmol), 2 (0.11 mmol), THF (0.1 M).
b Yield and diastereomeric ratio were determined by 1H NMR analysis of the unpurified reaction mixture using 3,4,5-trichloropyridine as an internal standard.
c Enantiomeric excess of (S,S)-isomer was determined with normal-phase HPLC on a chiral support.
d The reaction was performed on a 0.2 mmol scale in THF (0.2 M), and isolated yield was reported.
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After the identification of a highly selective ligand for
this transformation, a series of isatin imines 1 was evaluat-
ed with either 1 mol% or 3 mol% Cu catalyst (Table 2). The
Cbz-protected imine also proved suitable for this catalytic
system, affording the corresponding product with almost
the same level of selectivities (Table 2, entries 1, 2). Both
electron-donating and electron-withdrawing substituents
at the 5-position were tolerated (Table 2, entries 3–7). Posi-
tional isomers of 3d bearing a chlorine atom at different po-
sitions were obtained in comparable diastereo- and enanti-
oselectivities (Table 2, entries 8, 9). Substituents on the ox-
indole nitrogen other than Me were also examined. While
the PMB-protected substrate exhibited slightly lower reac-
tivity and selectivities (Table 2, entry 10), the allyl-protect-
ed compound afforded results close to those of the Me-sub-
stituted one (Table 2, entry 11). The relative and absolute
configurations of 3e were determined by X-ray diffraction,
and those of the other compounds were assigned by analogy.16

Table 2  Substrate Scope of the Mannich-Type Reaction of α-CF3 Am-
ide 2a

The reaction proceeded smoothly on a 3.0 mmol scale,
producing 1.46 g of Mannich adduct 3a with almost perfect
stereoselectivities, albeit a slightly higher catalyst loading
was necessary for full consumption of the substrates
(Scheme 2).17,18 We have previously shown that 7-azaindo-
line amides can provide an in situ chelating group when
treated with an organometallic reagent in a manner similar
to Weinreb amides, and thus prevent further sequential ad-
dition of the reagent.8b,9,11b,14b Mannich adduct 3a was re-
duced by the action of DIBALH to form a masked aldehyde
accompanied by the formation of an aluminum alkoxide de-
rived from reduction of the oxindole moiety, which cyclized
presumably during the workup. This triple-bond-forming
process (two reductions and one cyclization) furnished
highly decorated tricycle 4 in 46% yield with excellent dias-
tereoselectivity.19

Scheme 2  A large scale reaction and the transformation of its product 
into a tricyclic skeleton.

In summary, we developed the direct catalytic Man-
nich-type reaction of an α-CF3 amide to isatin imines. Eno-
lization was promoted without decomposition by a profi-
cient soft Lewis acidic Cu(I)/bisphosphine/Barton’s base
catalytic system, and the generated enolate underwent a
highly stereoselective addition, producing an α-tertiary
amine with an adjacent trifluoromethylated stereogenic
carbon. The Mannich adduct was smoothly transformed
into a tricyclic framework by harnessing a unique property
of the 7-azaindoline as a chelating unit in the reduction
step.
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the unpurified reaction mixture.
d Enantiomeric excess of (S,S)-isomer was determined with normal-phase 
HPLC on a chiral support.
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residue showed that the dr was >95:5. The combined crude
residue was then purified by silica gel column chromatography
(5% to 80% EtOAc in hexane) to afford product 3a (1.46 g, 99%
yield). IR (thin film): ν = 3371, 2943, 1721, 1653, 1426, 1256,
1164, 754 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.93–7.92 (m, 1
H), 7.51–7.49 (m, 1 H), 7.44 (d, J = 7.2 Hz, 1 H), 7.35–7.31 (m, 1
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23.7. 19F NMR (376 MHz, CDCl3): δ = –57.98 (d, J = 8.5 Hz).
HRMS (ESI): m/z calcd for C24H25O4N4F3Na [M + Na]+: 513.1720;
found: 513.1724. [α]D

24 –48.0 (c = 1.00, CHCl3). Enantiomeric
excess of the product was determined to be 98% by chiral sta-
tionary phase HPLC analysis (CHIRALPAK AD-H (φ 0.46 cm × 25
cm), 2-propanol/n-hexane = 1:4, flow rate 1.0 mL/min, detec-
tion at 254 nm, tR = 5.9 min (major), 13.2 min (minor)).

(19) The stereochemistry of 4 was assigned by NOE analysis. See the
Supporting Information for details.
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