
413

A. Bauer et al. LetterSyn  lett

SYNLETT0 9 3 6 - 5 2 1 4 1 4 3 7 - 2 0 9 6
Georg Thieme Verlag  Stuttgart · New York
2019, 30, 413–416
letter
en
A Short, Efficient, and Stereoselective Synthesis of Piperine and 
its Analogues
Adriano Bauer ◊ 
Jun-Hyun Nam ◊ 
Nuno Maulide* 0000-0003-3643-0718

Institute of Organic Chemistry, University of Vienna, Währinger 
Straße 38, 1090 Vienna, Austria
nuno.maulide@univie.ac.at

◊ These authors contributed equally to this work

Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue

O

O

MgBr

Cu OH

O

4p
conrot.

amide
formation

N

O

O

O

piperine

 Piperine synthesized in quantitative yield
 Full stereocontrol
 Modulation of the aryl and the amide moiety
Received: 26.11.2018
Accepted after revision: 16.12.2018
Published online: 14.01.2019
DOI: 10.1055/s-0037-1611652; Art ID: st-2018-b0768-l

License terms: 

Abstract A quantitative synthesis of piperine from commercially avail-
able starting material is presented. The synthesis relies on a stereose-
lective nucleophilic attack of an in situ generated cuprate onto a cy-
clobutene lactone. The so-formed aryl-substituted cyclobutene
spontaneously undergoes a conrotatory 4-electrocyclic ring opening
to form the 4-aryl pentadienoic acid as a single diastereoisomer. The
high-yielding synthesis can be easily modulated on the aryl and on the
amide moiety for the synthesis of a wide range of piperine analogues.
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In 1820, the Danish physicist and chemist Hans Chris-
tian Ørstedt, pursuing an interest in the isolation of ‘new al-
kalis’, reported a new alkaloid from pepper (piper nigrum),
which he called piperine.1 Piperine would ultimately gain
the attention of the chemistry and physiology communi-
ties2 mostly due to its wide range of biological activities.
This was foreshadowed by the original communication
itself, where Ørstedt noted that an ethanolic solution of
piperine has an ‘exceptionally pungent taste’.1 The pungen-
cy of piperine can be attributed to its agonistic nature to-
wards the heat- and acidity-sensing TRPV ion channels,
which are associated with temperature and pain regulation
in the human body.2a,b A range of human disorders are
linked to the overexpression of TRPV1, including inflamma-
tory bowel disease (ulcerative colitis and Crohn’s disease)

and chronic breast pain.2c Studies have shown that piperine
is a potent desensitizer of human TRPV1, rendering its
structure a potent scaffold for the design of improved
TRPV1 agonists.2c,d

Moreover, piperine has been recently identified as an al-
losteric modulator of the -amino butyric acid type A
(GABAA) receptor.3a The mode of action of piperine is thus
analogous to commonly used drugs such as benzodiaze-
pines, widely used as sleep-inducing agents. 3b,c In addition,
it has been shown that piperine derivatives are efficient in-
hibitors of vascular smooth muscle cell proliferation.4 Anti-
depressant5b and antitumor5c activities along with insecti-
cidal properties5d are also attributed to this intriguing mol-
ecule which can be technically found in almost every
modern kitchen in the world.

Despite the numerous demonstrated beneficial thera-
peutic properties of piperine, biological applications are
limited by its poor solubility in aqueous media.6 This im-
plies that new synthetic routes towards piperine analogues
are highly desirable.

Piperine can be easily extracted5 and its basic hydroly-
sis, yielding piperic acid, opens up the preparation of many
amide analogues for biological evaluation.7 This approach is
unfortunately limited by nonexchangeability of the aryl
moiety. Most approaches for the synthesis of 1-carbonyl-4-
aryl-substituted dienes typically make use of a (2 + 2), (3 +
1), or a (1 + 2 + 1) carbon disconnection. In this regard Wit-
tig olefination,8 olefin metathesis,9 palladium-catalyzed
cross-coupling,10 or ruthenium-catalyzed vinyl–alkyne cou-
pling11 have been employed as dominant strategies.
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Scheme 1  Previous work and this work

A rather unconventional approach is the direct coupling
of the aryl moiety with the diene or a diene precursor. Mi-
hovilovic and coworkers reported an efficient Heck reaction
approach in which an aryl bromide is coupled to a pentadi-
enoic amide (Scheme 1, a).4,12 Another intriguing, earlier
approach, relies on the addition of a Grignard reagent to a
furfural hydrazone, which rearranges to the corresponding
pentadienal under the reaction conditions (Scheme 1, b).13

Herein we would like to present a different strategy to-
wards the synthesis of piperine analogues. The bicyclo
[2.2.0] lactone 2 and its derivatives have been deployed in
previous work by our group and others as a versatile elec-
trophile.14 In particular, we have shown that copper-medi-
ated nucleophilic addition is a very robust method for a
trans-selective allylic substitution of 2.14f

The installation of an electron-rich moiety (such as –OR
or –N3) in this position has been earlier shown to facilitate a
subsequent, spontaneous 4-electrocyclic opening. This is
likely due to a push–pull relationship between the carbox-
ylic acid and the electron-donating substituent.15

We hypothesized that an aryl moiety might be suffi-
ciently electron donating in order to induce a similar push–
pull effect and enable facile electrocyclic ring opening, ei-
ther spontaneously at room temperature or upon mild
heating. Importantly, the transient trans-configured cy-
clobutene should undergo opening according to a thermally
allowed, conrotatory movement torquoselective for the E,E-
diene product.

Lactone 2 was prepared in quantitative yield photo-
chemically, as previously reported.14f In the event, we found
that addition of the in situ formed cuprate (from its corre-
sponding Grignard reagent 3a) directly led to piperic acid
(4a) as the sole product in a single, quantitative step.16 As
expected, 4a was formed exclusively as the E,E-diene iso-
mer in a clean reaction.17 Straightforward amide formation

via acyl chloride substitution with piperidine afforded pip-
erine in more than 95% isolated yield.18 Through the route
presented herein, this alkaloid was thus available in only
three quantitative steps from pyrone 1 and with full stereo-
selectivity (Scheme 2).

Scheme 2  A simple three-step synthesis of piperine

Encouraged by these results, we investigated the syn-
thesis of three different piperic acid analogues by using dif-
ferent Grignard reagents for the ring opening of bicyclolac-
tone 2. The 5-phenylpentadienoic acid (4b) was prepared in
quantitative yield, while the para-methoxyphenyl- and the
2-thiophenyl- analogues were formed in slightly lower
yields. Nevertheless, geometric selectivity was excellent in
all cases (Scheme 3).19 Finally, the corresponding amides
were formed as before via standard acyl chloride substitu-
tion (Scheme 4).18 It should be noted that amides 5bb and
5cb have been previously reported to enhance GABAA-in-
duced chloride currents more strongly than natural piper-
ine (789% ± 72% and 883% ± 70%, respectively).12
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Scheme 3  Synthesis of piperic acid analogues 4

Scheme 4  Synthesis of piperine analogues 5

In conclusion, we herein presented a conceptually new
approach to the synthesis of 4-aryl-substituted pentadieno-
ic acids and their amides in excellent yield and geometrical
stereoselectivity.20–26 This enabled a preparation of the nat-
ural product piperine in quantitative yield over three steps
from commercially available 2-pyrone 1. Analogues can be
readily synthesized through this modular and operationally
simple procedure.
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