Synthesis 2019; 51(12): 2542-2547
DOI: 10.1055/s-0037-1611794
special topic
© Georg Thieme Verlag Stuttgart · New York

Catalytic Hydrogenation of Carboxamides with a Bifunctional Cp*Ru Catalyst Bearing an Imidazol-2-ylidene with a Protic Aminoethyl Side Chain

Teruhiro Kawano
a   Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan   Email: ykayaki@o.cc.titech.ac.jp
,
Ryo Watari
b   Environmental Chemistry Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi, Chiba 270-1194, Japan
,
a   Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan   Email: ykayaki@o.cc.titech.ac.jp
,
Takao Ikariya
a   Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-E4-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan   Email: ykayaki@o.cc.titech.ac.jp
› Author Affiliations
This study was financially supported by the Japan Society for the Promotion of Science (JSPS KAKENHI, Grant Numbers 26620143 and 24350079).
Further Information

Publication History

Received: 22 February 2019

Accepted after revision: 19 March 2019

Publication Date:
25 April 2019 (online)


Published as part of the Special Topic Ruthenium in Organic Synthesis

Abstract

Synthesis of a Cp*Ru complex bearing an NH2-functionalized N-heterocyclic carbene (C–NH) was achieved by treatment of Cp*RuBr(isoprene) with an equimolar amount of a silver complex, which was generated from Ag2O and 1-(2-aminoethyl)-3-methylimidazolium bromide, in CH3CN at room temperature. The new Cp*RuBr(C–NH) complex showed a higher catalytic performance than the related Cp*RuCl(P–NH) and Cp*RuCl(N–NH) complexes. In the reaction of N-arylcarboxamides, the amine products were obtained in satisfactory yields under mild temperature conditions.

Supporting Information

 
  • References

  • 1 Deceased on April 21, 2017.
    • 2a Seyden-Penne J. Reductions by the Alumino- and Borohydrides in Organic Synthesis, 2nd ed. Wiley-VCH; New York: 1997
    • 2b Smith AM, Whyman R. Chem. Rev. 2014; 114: 5477
    • 2c Lampland NL, Hovey M, Mukherjee D, Sadow AD. ACS Catal. 2015; 5: 4219
    • 2d Hanada S, Tsutsumi E, Motoyama Y, Nagashima H. J. Am. Chem. Soc. 2009; 131: 15032 ; and references cited therein
    • 3a Dub PA, Ikariya T. ACS Catal. 2012; 2: 1718
    • 3b Zhao B, Han Z, Ding K. Angew. Chem. Int. Ed. 2013; 52: 4744
    • 3c Pritchard J, Filonenko GA, van Putten R, Hensen EJ. M, Pidko EA. Chem. Soc. Rev. 2015; 44: 3808
    • 4a Hirosawa C, Wakasa N, Fuchikami T. Tetrahedron Lett. 1996; 37: 6749
    • 4b Beamson G, Papworth AJ, Philipps C, Smith AM, Whyman R. J. Catal. 2010; 269: 93
    • 4c Burch R, Paun C, Cao XM, Crawford P, Goodrich P, Hardacre C, Hu P, McLaughlin L, Sá J, Thompson JM. J. Catal. 2011; 283: 89
    • 4d Stein M, Breit B. Angew. Chem. Int. Ed. 2013; 52: 2231
    • 4e Coetzee J, Manyar HG, Hardacre C, Cole-Hamilton DJ. ChemCatChem 2013; 5: 2843
    • 5a Núñez Magro AA, Eastham GR, Cole-Hamilton DJ. Chem. Commun. 2007; 43: 3154
    • 5b Dodds DL, Coetzee J, Klankermayer J, Brosinski S, Leitner W, Cole-Hamilton DJ. Chem. Commun. 2012; 48: 12249
    • 5c Coetzee J, Dodds DL, Klankermayer J, Brosinski S, Leitner W, Slawin AM. Z, Cole-Hamilton DJ. Chem. Eur. J. 2013; 19: 11039
    • 5d vom Stein T, Meuresch M, Limper D, Schmitz M, Hölscher M, Coetzee J, Cole-Hamilton DJ, Klankermayer J, Leitner W. J. Am. Chem. Soc. 2014; 136: 13217
    • 5e Meuresch M, Westhues S, Leitner W, Klankermayer J. Angew. Chem. Int. Ed. 2016; 55: 1392
    • 5f Cabrero-Antonino JR, Alberico E, Junge K, Junge H, Beller M. Chem. Sci. 2016; 7: 3432
    • 5g Yuan M.-L, Xie J.-H, Zhu S.-F, Zhou Q.-L. ACS Catal. 2016; 6: 3665
    • 5h Yuan M.-L, Xie J.-H, Zhou Q.-L. ChemCatChem 2016; 8: 3036
    • 6a Balaraman E, Gnanaprakasam B, Shimon LJ. W, Milstein D. J. Am. Chem. Soc. 2010; 132: 16756
    • 6b Ito M, Ootsuka T, Watari R, Shiibashi A, Himizu A, Ikariya T. J. Am. Chem. Soc. 2011; 133: 4240
    • 6c John JM, Bergens SH. Angew. Chem. Int. Ed. 2011; 50: 10377
    • 6d John JM, Takebayashi S, Dabral N, Miskolzie M, Bergens SH. J. Am. Chem. Soc. 2013; 135: 8578
    • 6e Miura T, Held IE, Oishi S, Naruto M, Saito S. Tetrahedron Lett. 2013; 54: 2674
    • 6f Barrios-Francisco R, Balaraman E, Diskin-Posner Y, Leitus G, Shimon LJ. W, Milstein D. Organometallics 2013; 32: 2973
    • 6g Kita Y, Higuchi T, Mashima K. Chem. Commun. 2014; 50: 11211
    • 6h John JM, Loorthuraja R, Antoniuk E, Bergens SH. Catal. Sci. Technol. 2015; 5: 1181
    • 6i Cabrero-Antonino JR, Alberico E, Drexler HJ, Baumann W, Junge K, Junge H, Beller M. ACS Catal. 2016; 6: 47
    • 6j Schneck F, Assmann M, Balmer M, Harms K, Langer R. Organometallics 2016; 35: 1931
    • 6k Garg JA, Chakraborty S, Ben-David Y, Milstein D. Chem. Commun. 2016; 52: 5285
    • 6l Rezayee NM, Samblanet DC, Sanford MS. ACS Catal. 2016; 6: 6377
    • 6m Shi L, Tan X, Long J, Xiong X, Yang S, Xue P, Lv H, Zhang X. Chem. Eur. J. 2017; 23: 546
    • 6n Jayarathne U, Zhang Y, Hazari N, Bernskoetter WH. Organometallics 2017; 36: 409
    • 6o Papa V, Cabrero-Antonino JR, Alberico E, Spanneberg A, Junge K, Junge H, Beller M. Chem. Sci. 2017; 8: 3576
    • 6p Rasu L, John JM, Stephenson E, Endean R, Kalapugama S, Clément R, Bergens S. J. Am. Chem. Soc. 2017; 139: 3065
    • 6q Wang Z, Li Y, Liu Q.-b, Solan GA, Ma Y, Sun W.-H. ChemCatChem 2017; 9: 4275
    • 6r Miura T, Naruto M, Toda K, Shimomura T, Saito S. Sci. Rep. 2017; 7: 1586
    • 6s Chen J, Wang J, Tu T. Chem. Asian J. 2018; 13: 2559

      Tandem hydrogenation of CO2 to methanol via formamides:
    • 7a Rezayee NM, Huff CA, Sanford MS. J. Am. Chem. Soc. 2015; 137: 1028
    • 7b Khusnutdinova JR, Garg JA, Milstein D. ACS Catal. 2015; 5: 2416
    • 7c Zhang L, Han Z, Zhao X, Wang Z, Ding K. Angew. Chem. Int. Ed. 2015; 54: 6186
    • 7d Kothandaraman J, Goeppert A, Czaun M, Olah GA, Prakash GK. S. J. Am. Chem. Soc. 2016; 138: 778
    • 7e Kar S, Goeppert A, Kothandaraman J, Prakash GK. S. ACS Catal. 2017; 7: 6347
    • 7f Everett M, Wass DF. Chem. Commun. 2017; 53: 9502
    • 7g Kar S, Sen A, Goeppert R, Prakash GK. S. J. Am. Chem. Soc. 2018; 140: 1580
    • 8a Khusnutdinova JR, Milstein D. Angew. Chem. Int. Ed. 2015; 54: 12236
    • 8b Zell T, Milstein D. Acc. Chem. Res. 2015; 48: 1979
  • 9 Ikariya T. Bull. Chem. Soc. Jpn. 2011; 84: 1
    • 10a Ito M, Sakaguchi A, Kobayashi C, Ikariya T. J. Am. Chem. Soc. 2007; 129: 290
    • 10b Ito M, Koo LW, Himizu A, Sakaguchi A, Kobayashi C, Ikariya T. Angew. Chem. Int. Ed. 2009; 48: 1324
    • 10c Ito M, Kobayashi C, Himizu A, Ikariya T. J. Am. Chem. Soc. 2010; 132: 11414
    • 11a Nelson DJ, Nolan SP. Chem. Soc. Rev. 2013; 42: 6723
    • 11b Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
    • 11c Ramasamy B, Ghosh P. Eur. J. Inorg. Chem. 2016; 1448
    • 11d Peris E. Chem. Rev. 2018; 118: 9988
    • 11e Hey DA, Reich RM, Baratta W, Kühn FE. Coord. Chem. Rev. 2018; 374: 114
    • 12a O, W. W. N.; Lough AJ, Morris RH. Organometallics 2011; 30: 1236
    • 12b Westerhaus FA, Wendt B, Dumrath A, Wienhöfer G, Junge K, Beller M. ChemSusChem 2013; 6: 1001
    • 12c Wang T, Pranckevicius C, Lund CL, Sgro MJ, Stephan DW. Organometallics 2013; 32: 2168
    • 12d Witt J, Pöthig A, Kühn FE, Baratta W. Organometallics 2013; 32: 4042
    • 12e Pranckevicius C, Fan L, Stephan DW. J. Am. Chem. Soc. 2015; 137: 5582
    • 12f Hernández-Juárez M, López-Serrano J, Lara P, Morales-Cerón JP, Vaquero M, Álvarez E, Salazar V, Suárez A. Chem. Eur. J. 2015; 21: 7540
    • 12g Ogata O, Nakayama Y, Nara H, Fujiwhara M, Kayaki Y. Org. Lett. 2016; 18: 3894
    • 13a O, W. W. N.; Lough AJ, Morris RH. Chem. Commun. 2010; 46: 8240
    • 13b O, W. W. N.; Lough AJ, Morris RH. Organometallics 2012; 31: 2137
    • 13c O, W. W. N.; Morris RH. ACS Catal. 2013; 3: 32
  • 14 Wan KY, Sung MM. H, Lough AJ, Morris RH. ACS Catal. 2017; 7: 6827
  • 15 Filonenko GA, Aguila MJ. B, Schulpen EN, van Putten R, Wiecko J, Müller C, Lefort L, Hensen EJ. M, Pidko EA. J. Am. Chem. Soc. 2015; 137: 7620
    • 16a Wang HM. J, Lin IJ. B. Organometallics 1998; 17: 972
    • 16b Warsink S, de Boer SY, Jongens LM, Fu CF, Liu ST, Chen JT, Lutz M, Spek AL, Elsevier CJ. Dalton Trans. 2009; 7080
    • 16c Ballarin B, Busetto L, Cassani MC, Femoni C, Ferrari AM, Miletto I, Caputo G. Dalton Trans. 2012; 41: 2445
    • 16d Ohara H, ; O, W. W. N.; Lough AJ, Morris RH. Dalton Trans. 2012; 41: 8797
    • 17a Ito M, Ikariya T. Chem. Commun. 2007; 43: 5134
    • 17b Ito M, Hirakawa M, Osaku A, Ikariya T. Organometallics 2003; 22: 4190
  • 18 Lee S.-H, Nikonov GI. ChemCatChem 2015; 7: 107
  • 19 Kamezaki S, Akiyama S, Kayaki Y, Kuwata S, Ikariya T. Tetrahedron: Asymmetry 2010; 21: 1169
  • 20 John JM, Takebayashi S, Dabral N, Miskolzie M, Bergens SH. J. Am. Chem. Soc. 2013; 135: 8578
    • 21a Moritani J, Kayaki Y, Ikariya T. RSC Adv. 2014; 4: 61001
    • 21b Hedberg C, Källström K, Arvidsson PI, Brandt P, Andersson PG. J. Am. Chem. Soc. 2005; 127: 15083
  • 22 Gemel K, Mereiter K, Schmid R, Kirchner K. Organometallics 1995; 14: 1405
  • 23 Zhou X, Wu T, Ding K, Hu B, Hou M, Han B. Chem. Commun. 2009; 1897