Synlett 2019; 30(09): 1090-1094
DOI: 10.1055/s-0037-1611803
letter
© Georg Thieme Verlag Stuttgart · New York

Fe-Catalyzed Bisphosphorylation of Amino-2-en-1-ones with Trialkyl Phosphites

Shengmei Guo
,
Kun Jie
,
Ling Huang
,
Zhebin Zhang
,
Yufeng Wang
,
Zhengjiang Fu
,
Hu Cai*
Department of Chemistry, Nanchang University, No. 999, Xuefu Rd. Nanchang, 330031, P. R. of China   Email: Caihu@ncu.edu.cn
› Author Affiliations
We thank the National Natural Science Foundation of China (21861024, 21571094, 21761021) for financial support.
Further Information

Publication History

Received: 11 March 2019

Accepted after revision: 01 April 2019

Publication Date:
18 April 2019 (online)


Abstract

A facile bisphosphorylation of amino-2-en-1-ones with trialkyl phosphites mediated by iron is developed. The reaction is considered to go through two Michael addition progresses. A variety of amino-2-en-1-ones are bisphosphorylated in high yields with functional group tolerance. In addition, the protocol of introduction of two different phosphates into one molecule is successful through a cascade reaction.

Supporting Information

 
  • References and Note

    • 1a Shimizu GK. H, Vaidhyanathan R, Taylor JM. Chem. Soc. Rev. 2009; 38: 1430
    • 1b McGrath JW, Chin JP, Quinn JP. Nat. Rev. Microbiol. 2013; 11: 412
    • 1c Leoncini A, Huskens J, Verboom W. Chem. Soc. Rev. 2017; 46: 7229
    • 1d Downey YA. M, Cario CW. Med. Chem. Commun. 2014; 5: 1619
    • 1e Fiore M. Org. Biomol. Chem. 2018; 16: 3068
    • 1f Shiraishi T, Hamzavi R, Nielsen PE. Nucleic Acids Res. 2008; 36: 4424
    • 2a Zhao D, Wang R. Chem. Soc. Rev. 2012; 41: 2095
    • 2b Wu L, Zhang X, Chen Q.-Q, Zhou A.-K. Org. Biomol. Chem. 2012; 10: 7859
    • 2c Zhang P, Zhang L, Gao Y, Xu J, Fang H, Tang G, Zhao Y. Chem. Commun. 2015; 51: 7839
    • 2d Casey CP, Paulsen EL, Beuttenmueller EW, Proft BR, Petrovich LM, Matter BA, Powell DR. J. Am. Chem. Soc. 1997; 119: 11817
    • 2e Lin B, Lu G, Lin R, Cui Y, Liu Y, Tang G, Zhao Y. Synlett 2018; 29: 2697
    • 2f Khan HA, Ellman JA. Synthesis 2013; 45: 3147
    • 2g Jia Y, Xiao J, Zhou Y, Chen T, Yin S, Han L.-B. Chin. J. Org. Chem. 2017; 37: 1055
    • 3a Horner SL, Gerhard J. Phosphorus Sulfur Relat. Elem. 1985; 22: 13
    • 3b Antczak MI, Montchamp J. -L. Org. Lett. 2008; 10: 977
    • 3c Huang L, Zhu Z, Cao T, Lei X, Gong J, Guo S, Cai H. Chin. J. Org. Chem. 2017; 37: 1571
    • 3d Wang Y, Yang Y, Huang L, Jie K, Guo S, Cai H. Chin. J. Org. Chem. 2017; 37: 3220
    • 3e Cheng L, Yu T, Li B, Xiao G, Tang W. Angew. Chem. Int. Ed. 2015; 54: 3792
    • 3f O'Brien CJ, Lavigne F, Coyle EE, Holohan AJ, Doonan BJ. Chem. Eur. J. 2013; 19: 5854
    • 4a Michaelis A, Kaehne R. Chem. Rev. 1898; 31: 1048
    • 4b Gerrard W, Green WJ. J. Chem. Soc. 1951; 2550
    • 4c Garner AY, Chapin EC, Scanlon PM. J. Org. Chem. 1959; 24: 532
    • 4d Arbuzov BA. Pure Appl. Chem. 1964; 9: 315
    • 4e Bhattacharya AK, Thyagarajan G. Chem. Rev. 1981; 81: 415
    • 4f Ma X, Xu Q, Li H, Sun C, Yu L, Zhang X, Cao H, Han L.-B. Green Chem. 2018; 20: 3408
    • 4g Fernández-Valle ME, Martínez-Álvarez R, Molero-Vílchez D, Pardo ZD, Sáez E, Barajas A, Herrera A. J. Org. Chem. 2015; 80: 799
    • 4h Rajeshwaran GG, Nandakumar M, Sureshbabu R, Mohanaskrishnan AK. Org. Lett. 2011; 13: 1270
    • 4i Subramanyam CH, Basha SK, Rasheed S, Madhava GT, Sankar AU, Raju CN. Phosphorus, Sulfur Silicon Relat. Elem. 2015; 190: 1948
    • 5a Rulev AY. RSC Adv. 2014; 4: 26002
    • 5b Li Z, Fan F, Zhang A, Xiao Y, Liu D, Liu Z.-Q. RSC Adv. 2015; 5: 27853
    • 5c Lopez G, Alaaeddine A, Améduri B. Polym. Chem. 2013; 4: 3636
    • 5d Dondoni A, Marra A. Org. Biomol. Chem. 2015; 13: 2212
    • 5e Gu J, Cai C. Org. Biomol. Chem. 2017; 15: 4226
    • 5f Pillarsetty N, Raghuraman K, Barnes CL, Katti KV. J. Am. Chem. Soc. 2008; 137: 331
    • 6a Bugaenko DI, Yurovskaya MA, Karchava AV. Org. Lett. 2018; 20: 6389
    • 6b Pet MA, Cain MF, Hughes RP, Glueck DS, Golen JA, Rheingold AL. J. Org. Chem. 2018; 83: 3928
    • 6c Labrue F, Pons B, Ricard L, Marinetti A. J. Organomet. Chem. 2005; 690: 2285
    • 6d Nakanishi S, Myers TC, Jensen EV. J. Am. Chem. Soc. 1955; 77: 3099
    • 6e Johnson RL, Rao KS. S. P. Bioorg. Med. Chem. Lett. 2005; 15: 57
    • 6f Helinski J, Skrzypczynski Z, Michalski J. Tetrahedron Lett. 1995; 36: 9201
  • 7 Liu C.-R, Li M.-B, Chen D.-J, Yang C.-F, Tian S.-K. Org. Lett. 2009; 11: 2543
  • 8 Huang L, Zhang Z, Jie K, Wang Y, Fu Z, Guo S, Cai H. Org. Chem. Front. 2018; 5: 3548
    • 9a Liu L, Wu Y, Wang Z, Zhu J, Zhao Y. J. Org. Chem. 2014; 79: 6816
    • 9b Lygo B, Beynon C, Lumley C, Mcleod MC, Wade CE. Tetrahedron Lett. 2009; 50: 3363
    • 9c Hu B, Deng L. Angew. Chem. Int. Ed. 2018; 57: 2233
    • 9d Li Z, Hu B, Wu Y, Fei C, Deng L. Proc. Natl. Acad. Sci. U.S.A. 2018; 115: 1730
    • 10a Huang L, Gong J, Zhu Z, Wang Y, Guo S, Cai H. Org. Lett. 2017; 19: 2242
    • 10b Gong J, Huang L, Deng Q, Jie K, Wang Y, Guo S, Cai H. Org. Chem. Front. 2017; 4: 1781
    • 10c Wang Y, Yang Y, Jie K, Huang L, Guo S, Cai H. ChemCatChem 2018; 10: 716
    • 10d Guo S, Jie K, Zhang Z, Fu Z, Cai H. Eur. J. Org. Chem. 2019; 1808
  • 11 2-[(Diethylamino)methyl]-1-phenylprop-2-en-1-one (1a) Ketone 1 (1 mmol) was mixed with silica gel (2.0 g) in a mortar. Then formaldehyde (0.18 g, 3 mmol, 37% in H2O) and dialkylamine (2 mmol) were added and mixed. The mixture was placed into a flask with a cap and stirred for 5–7 h at room temperature. Then diethyl ether (20 mL) was added. After filtration and the removal of the solvent at the reduced pressure, the product was isolated. Further purification of the crude reaction mixture on silica gel column gave the pure product.
  • 12 General Procedure for 3a To a 50 mL Schlenk tube with a stir bar added allylamine derivatives 1a (81.9 mg, 0.3 mmol), triethyl phosphite (149.5 mg, 3 equiv), Fe(NO3)3·9H2O (20 mol%), and DCE (2 mL), the mixture was stirred at 100 °C for 5 h and monitored by TLC. The solution was then evaporated under vacuum. The crude reaction mixture was purified by column chromatography on silica gel (pure EtOAc) to get product 3a.1H NMR (400 MHz, CDCl3): δ = 8.12 (d, J = 7.4 Hz, 2 H), 7.58 (t, J = 7.1 Hz, 1 H), 7.51 (t, J = 7.4 Hz, 2 H), 4.34 (ddd, J = 20.5, 13.9, 6.6 Hz, 1 H), 4.13–3.91 (m, 8 H), 2.44–2.32 (m, 2 H), 2.14–2.01 (m, 2 H), 1.24 (t, J = 7.0 Hz, 6 H), 1.14 (t, J = 7.0 Hz, 6 H) ppm.13C NMR (101 MHz, CDCl3): δ = 199.77, 199.68, 199.59, 135.05, 133.61, 128.92, 128.88, 77.32, 77.00, 76.68, 62.56, 62.49, 62.35, 62.29, 34.46, 34.43, 34.41, 28.95, 28.85, 27.53, 27.43, 16.24, 16.18, 16.10, 16.03 ppm.31P NMR (243 MHz, CDCl3): δ = 28.09 ppm. HRMS: m/z calcd for C18H31O7P2 [M + H]+: 421.1540; found: 421.1541.
  • 13 General Procedure for 5a To a 50 mL Schlenk tube with a stir bar added allylamine derivatives 1a (81.9 mg, 0.3 mmol), diethyl phosphite (82.8 mg, 2 equiv), and DCE (2 mL), the mixture was stirred at 100 °C for 8 h. Then, trialkyl phosphite (1.5 equiv), Fe(NO3)3·9H2O (20 mol%), and DCE (2 mL) were added. The mixture was stirred at 100 °C for 5 h and monitored by TLC. The solution was then evaporated under vacuum. The crude reaction mixture was purified by column chromatography on silica gel (pure EtOAc) to get the product. 1H NMR (400 MHz, CDCl3): δ = 8.01 (d, J = 7.4 Hz, 2 H), 7.58 (t, J = 7.3 Hz, 1 H), 7.48 (t, J = 7.6 Hz, 2 H), 4.21–4.06 (m, 1 H), 4.00 (p, J = 7.3 Hz, 4 H), 3.62 (d, J = 10.9 Hz, 6 H), 2.43–2.23 (m, 2 H), 2.17–2.02 (m, 2 H), 1.24–1.16 (m, 6 H) ppm.13C NMR (101 MHz, CDCl3): δ = 199.91 (s), 135.59 (s), 133.51 (s), 128.73 (d, J = 13.8 Hz), 61.91 (t, J = 6.9 Hz), 52.39 (t, J = 6.5 Hz), 34.96 (t, J = 3.3 Hz), 29.65 (d, J = 12.6 Hz), 28.35 (dd, J = 20.7, 11.8 Hz), 27.05 (d, J = 11.1 Hz), 16.27 (t, J = 5.8 Hz) ppm. 31P NMR (243 MHz, CDCl3): δ = 30.78, 27.87 ppm. HRMS: m/z calcd for C16H27O7P2 [M + H]+: 393.1227; found: 393.1227.