Synlett 2019; 30(11): 1356-1360
DOI: 10.1055/s-0037-1611842
letter
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Mannich Reaction of N-Boc Imines with Alkylmalononitriles Catalyzed by Dinuclear PhosphoiminoBINOL-Pd Complex

a   Soft Molecular Activation Research Center (SMARC), Chiba University1-33 Yayoi, Inage, Chiba 263-8522, Japan
b   Chiba Iodine Research Innovation Center (CIRIC), Chiba University1-33 Yayoi, Inage, Chiba 263-8522, Japan
c   Department of Chemistry, Graduate School of Science, Chiba University1-33 Yayoi, Inage, Chiba 263-8522, Japan   Email: tarai@faculty.chiba-u.jp
,
Ayu Nakamura
a   Soft Molecular Activation Research Center (SMARC), Chiba University1-33 Yayoi, Inage, Chiba 263-8522, Japan
b   Chiba Iodine Research Innovation Center (CIRIC), Chiba University1-33 Yayoi, Inage, Chiba 263-8522, Japan
c   Department of Chemistry, Graduate School of Science, Chiba University1-33 Yayoi, Inage, Chiba 263-8522, Japan   Email: tarai@faculty.chiba-u.jp
› Author Affiliations
This research is supported by JSPS KAKENHI Grant Number JP19H02709 in Grant-in-Aid for Scientific Research (B), JP16H01004 and JP18H04237 in Precisely Designed Catalysts with Customized Scaffolding.
Further Information

Publication History

Received: 15 April 2019

Accepted after revision: 08 May 2019

Publication Date:
23 May 2019 (online)


Abstract

PhosphoiminoBINOL-Pd2(OAc)2 complex catalyzed asymmetric Mannich reaction of N-Boc imines with alkyl malononitriles, with assistance of Zn(OAc)2 gave chiral amines with adjacent all-carbon quaternary carbon centers in up to 99% yield with 94% ee.

Supporting Information

 
  • References and Notes


    • Reviews of catalytic asymmetric Mannich reaction:
    • 1a Cordova A. Acc. Chem. Res. 2004; 37: 102
    • 1b Cai X.-H, Hui G, Bing X. Eur. J. Chem. 2012; 3: 258
    • 1c Kumagai N, Shibasaki M. Bull. Chem. Soc. Jpn. 2015; 88: 503
    • 1d Saranya S, Harry NA, Krishnan KK, Anilkumar G. Asian J. Org. Chem. 2018; 7: 613

      Selected examples of asymmetric catalyses using malononitrile:
    • 2a Taylor MS, Jacobsen EN. J. Am. Chem. Soc. 2003; 125: 11204
    • 2b Kanemasa S, Itoh K. Eur. J. Org. Chem. 2004; 4741
    • 2c Hoashi Y, Okino T, Takemoto Y. Angew. Chem. Int. Ed. 2005; 44: 4032
    • 2d Inokuma T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2006; 128: 9413
    • 2e Wang J, Li H, Zu L, Jiang W, Xie H, Duan W, Wang W. J. Am. Chem. Soc. 2006; 128: 12652
    • 2f Li XF, Cun LF, Lian CX, Zhang L, Chen YC, Liao J, Zhu J, Deng JG. Org. Biomol. Chem. 2008; 6: 349
    • 2g Russo A, Perfetto A, Lattanzi A. Adv. Synth. Catal. 2009; 351: 3067
    • 2h Gogoi S, Zhao C.-G. Tetrahedron Lett. 2009; 50: 2252
    • 2i Jing LH, Wei JT, Zhou L, Huang ZY, Li ZK, Wu D, Xiang HF, Zhou XG. Chem. Eur. J. 2010; 16: 10955
    • 2j Ren Q, Gao YJ, Wang J. Chem. Eur. J. 2010; 16: 13594
    • 2k Su Z, Lee HW, Kim CK. Org. Biomol. Chem. 2011; 9: 6402
    • 2l Tan HR, Ng HF, Chang J, Wang J. Chem. Eur. J. 2012; 18: 3865
    • 2m Su Z, Lee HW, Kim CK. Eur. J. Org. Chem. 2013; 1706
    • 2n Gao Y, Du D.-M. Chem. Asian J. 2014; 9: 2970
    • 2o Fu N, Zhang L, Luo S. Org. Lett. 2015; 17: 382
    • 2p Caruana L, Mondatori M, Corti V, Morales S, Mazzanti A, Fochi M, Bernardi L. Chemistry 2015; 21: 6037
    • 2q Wang Y, Xu Y.-N, Fang G.-S, Kang H.-J, Gu Y, Tian S.-K. Org. Biomol. Chem. 2015; 13: 5367
    • 2r Brindani N, Dell’Amico L, Curti C, Sartori A, Battistini L, Casiraghi G, Greco D, Zanardi F, Brindani N, Rassu G. Angew. Chem. Int. Ed. 2015; 54: 7386
    • 2s Zhu Q.-N, Zhang Y.-C, Xu M.-M, Sun X.-X, Yang X, Shi F. J. Org. Chem. 2016; 81: 7898
    • 2t Zheng S.-C, Wu S, Zhou Q, Chung LW, Ye L, Tan B. Nat. Commun. 2017; 815238
    • 2u Grugel CP, Breit B. Chemistry 2018; 24: 15223
    • 2v Chen X.-Y, Li S, Liu Q, Kumar M, Peuronen A, Rissanen K, Enders D. Chem. Eur. J. 2018; 24: 9735
    • 2w Grugel CP, Breit B. Chem. Eur. J. 2018; 24: 15223
    • 2x Hayashi Y, Kranidiotis-Hisatomi N, Sakamoto D, Oritani K, Kawamoto T, Kamimura A. Eur. J. Org. Chem. 2018; 6843
    • 2y Zhang Y.-C, Zhang B.-W, Geng R.-L, Song J. Org. Lett. 2018; 20: 7907
    • 2z Liu X, Wang K, Guo W, Liu Y, Li C. Chem. Commun. 2019; 55: 2668
  • 3 Lu Z, Xie C, Zhou W, Duan Z, Han J, Pan Y. Chin. J. Chem. 2012; 30: 2333
  • 4 Monge D, Jensen KL, Franke PT, Lykke L, Jørgensen KA. Chem. Eur. J. 2010; 16: 9478
  • 5 Chen X, Chen H, Ji X, Jiang H, Yao Z.-J, Liu H. Org. Lett. 2013; 15: 1846

    • Other selected examples for asymmetric Mannich reaction using alkyl malononitriles:
    • 6a Ding R, De los Santos ZA, Wolf C. ACS Catal. 2019; 9: 2169
    • 6b Kawato Y, Kumagai N, Shibasaki M. Chem. Commun. 2013; 49: 11227
    • 6c Lin S, Kawato Y, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2015; 54: 5183
    • 6d Hashimoto K, Kumagai N, Shibasaki M. Chem. Eur. J. 2015; 21: 4262
    • 6e Xu L, Wang H, Zheng C, Zhao G. Adv. Syn. Catal. 2017; 359: 2942
    • 6f Balaji PV, Brewitz L, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2018; 58: 2644
    • 6g Nakashima K, Noda Y, Hirashima S, Koseki Y, Miura T. J. Org. Chem. 2018; 83: 2402
    • 7a Arai T, Oka I, Morihata T, Awata A, Masu H. Chem. Eur. J. 2013; 19: 1554
    • 7b Arai T, Moribatake T, Masu H. Chem. Eur. J. 2015; 21: 10671
    • 7c Arai T, Tosaka T, Kuwano S. ChemistrySelect 2017; 2: 7368
    • 7d Kuwano S, Suzuki T, Hosaka Y, Arai T. Chem. Commun. 2018; 54: 3847
  • 8 Arai T, Sato K, Nakamura A, Makino H, Masu H. Sci. Rep. 2018; 8: 837
  • 9 Typical Experimental Procedures A mixture of 3,3′-bis(phosphoimino)binaphthol (0.005 mmol) and Pd(OAc)2 (0.01 mmol) was stirred in anhydrous chloroform (4.0 mL) for 12 h at 60 °C. After adding Zn(OAc)2 (0.005 mmol) to the mixture, the solution was further stirred for 12 h at 60 °C to give the catalyst solution. The Mannich reaction was started by adding alkyl malononitrile (0.1 mmol) and N-Boc aldimine (0.11 mmol) to the catalyst solution at rt. After being stirred for 4 h at rt, the reaction mixture was quenched with H2O, and then the products were extracted three times with dichloromethane. The collected organic layer was dried over Na2SO4. After removal of the solvent under reduced pressure, the residue was purified by a silica gel column chromatography. The enantiomeric excesses of the products were determined by chiral stationary phase HPLC using Daicel Chiralpak IA or AD-H column.
  • 10 Characterization Data of 3aa [α]D 20.4 +30.5° (c 1.0, CHCl3, 93% ee). 1H NMR (400 MHz, CDCl3): δ = 7.51–7.45 (m, 5 H), 7.41–7.38 (m, 5 H), 5.54 (d, J = 9.6 Hz, 1 H), 5.32 (d, J = 9.6 Hz, 1 H), 3.27 (d, J = 14.0 Hz, 1 H), 3.17 (d, J = 13.6 Hz, 1 H), 1.47 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 154.8, 130.1, 129.4, 128.5, 127.0, 111.1, 110.8, 81.7, 55.5, 29.6, 28.1. IR (neat): 3347, 2980, 1706, 1521, 1498, 1368, 1250, 1167, 762, 705 cm–1. HRMS (ESI+): m/z calcd for C22H24O2N3 [M + H]+: 362.1863; found: 362.1860. Enantiomeric excess was determined by HPLC with a Chiralpak IA column (hexane/2-propanol = 80:20, 1.0 mL/min, 254 nm); major enantiomer t R = 9.7 min, minor enantiomer t R = 6.0 min, 93% ee.