Synlett 2019; 30(06): 642-646
DOI: 10.1055/s-0037-1611943
synpacts
© Georg Thieme Verlag Stuttgart · New York

Alkyne-Forming Furan Fragmentation: A General Method to Convert Furans into Alkynoic Acids

Jiachen Deng
,
CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: guijh@sioc.ac.cn
› Author Affiliations
Financial support was provided by the ‘Thousand Youth Talents Plan’, the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB20000000), the ‘Shanghai Rising-Star Plan’ (Grant No. 17QA1405100), CAS Key Laboratory of Synthetic Chemistry of Natural Substances, and Shanghai Institute of Organic Chemistry.
Further Information

Publication History

Received: 24 November 2018

Accepted after revision: 06 December 2018

Publication Date:
08 January 2019 (online)


In memory of Prof. Wei-Shan Zhou on the occasion of the 95th anniversary of his birth.

Abstract

Furans are readily available and highly reactive heterocycles that serve as versatile four-carbon synthons in organic synthesis. Recently, we discovered that furans, upon oxidation with singlet oxygen, can be transformed into alkynes via dual C–C double-bond cleavage. This Synpacts article presents an overview of the historical context and the development of this furan fragmentation reaction. We also discuss its application in natural product synthesis and a plausible reaction mechanism.

1 Introduction

2 Background of Alkyne-Forming Furan Fragmentation

3 Reaction Development

4 Conclusion

 
  • References

  • 1 Merino P. Org. React. 2015; 87: 1
  • 2 Wright DL. Chem. Innovation 2001; 31: 17
  • 3 Ghogare AA, Greer A. Chem. Rev. 2016; 116: 9994
  • 4 Laliberte R, Medawar G, Lefebvre Y. J. Med. Chem. 1973; 16: 1084
  • 5 Couladouros EA, Georgiadis MP. J. Org. Chem. 1986; 51: 2725
  • 6 Li Z, Tong R. J. Org. Chem. 2016; 81: 4847
  • 7 Pedro M, Tomas T, Delso JI, Rosa M. Curr. Org. Chem. 2007; 11: 1076
  • 8 Deng J, Wu J, Tian H, Bao J, Shi Y, Tian W, Gui J. Angew. Chem. Int. Ed. 2018; 57: 3617

    • For selected examples and reviews, see:
    • 9a Trost BM. Top. Curr. Chem. 1986; 133: 3
    • 9b Moran J, Dornan P, Beauchemin AM. Org. Lett. 2007; 9: 3893
    • 9c Chen K, Eschenmoser A, Baran PS. Angew. Chem. Int. Ed. 2009; 48: 9705
    • 9d Kuzmanich G, Garcia-Garibay MA. J. Phys. Org. Chem. 2011; 24: 883
    • 9e Zou L, Paton RS, Eschenmoser A, Newhouse TR, Baran PS, Houk KN. J. Org. Chem. 2013; 78: 4037
    • 9f Ratjen L, Vantomme G, Lehn J.-M. Chem. Eur. J. 2015; 21: 10070
    • 9g Walczak MA. A, Krainz T, Wipf P. Acc. Chem. Res. 2015; 48: 1149
    • 9h Gianatassio R, Lopchuk JM, Wang J, Pan C.-M, Malins LR, Prieto L, Brandt TA, Collins MR, Gallego GM, Sach NW, Spangler JE, Zhu H, Zhu J, Baran PS. Science 2016; 351: 241
    • 9i Lopchuk JM, Fjelbye K, Kawamata Y, Malins LR, Pan C.-M, Gianatassio R, Wang J, Prieto L, Bradow J, Brandt TA, Collins MR, Elleraas J, Ewanicki J, Farrell W, Fadeyi OO, Gallego GM, Mousseau JJ, Oliver R, Sach NW, Smith JK, Spangler JE, Zhu H, Zhu J, Baran PS. J. Am. Chem. Soc. 2017; 139: 3209
  • 10 Yakushijin K, Kozuka M, Furukawa H. Chem. Pharm. Bull. 1980; 28: 2178
  • 11 Graziano ML, Iesce MR, Cinotti A, Scarpati R. J. Chem. Soc., Perkin Trans. 1 1987; 1833
  • 12 Kazancioglu EA, Kazancioglu MZ, Fistikci M, Secen H, Altundas R. Org. Lett. 2013; 15: 4790
  • 13 Wasserman HH, Druckrey E. J. Am. Chem. Soc. 1968; 90: 2440
  • 14 Kurtz DW, Shechter H. Chem. Commun. 1966; 689

    • C2-Phenyl furans may undergo O-neophyl rearrangement to afford γ-ketoesters, see:
    • 15a Banks JT, Scaiano JC. J. Phys. Chem. 1995; 99: 3527
    • 15b Antunes CS. A, Bietti M, Ercolani G, Lanzalunga O, Salamone M. J. Org. Chem. 2005; 70: 3884
    • 15c Bietti M, Salamone M. J. Org. Chem. 2005; 70: 10603
    • 15d Bietti M, Ercolani G, Salamone M. J. Org. Chem. 2007; 72: 4515
    • 15e Bietti M, Calcagni A, Cicero DO, Martella R, Salamone M. Tetrahedron Lett. 2010; 51: 4129
  • 16 Zhang Z, Giampa GM, Draghici C, Huang Q, Brewer M. Org. Lett. 2013; 15: 2100
    • 17a Draghici C, Brewer M. J. Am. Chem. Soc. 2008; 130: 3766
    • 17b Bayir A, Draghici C, Brewer M. J. Org. Chem. 2010; 75: 296
  • 18 Mohamad K, Sévenet T, Dumontet V, Païs M, Van Tri M, Hadi H, Awang K, Martin M.-T. Phytochemistry 1999; 51: 1031
  • 19 Larock RC, Hightower TR. J. Org. Chem. 1993; 58: 5298
    • 20a Story PR, Hall TK, Morrison WH, Farine JC. Tetrahedron Lett. 1968; 5397
    • 20b Story PR, Morrison WH, Hall TK, Farine JC, Bishop CE. Tetrahedron Lett. 1968; 3291
    • 20c Story PR, Morrison WH, Butler JM. J. Am. Chem. Soc. 1969; 91: 2398
    • 20d Kuo YH, Shieh CJ. Heterocycles 1986; 24: 1271
  • 21 Shipman M. Contemp. Org. Synth. 1995; 2: 1