Diastereoselective and Enantioselective Conjunctive Cross-Coupling Enabled by Boron Ligand Design

Significance: The authors describe a conjunctive cross-coupling process to access products with vicinal stereogenic centers. This method avoids the generation of Suzuki–Miyaura stilbene byproducts obtained when typical boronic esters are employed.

Comment: Products are obtained in moderate yields and excellent enantio- and diastereoselectivities. The synthetic utility of the –B(mac) handle is demonstrated. Additionally, this methodology was used for the synthesis of (+)-obtusafuran.

Synthetic Examples:

- **X = OTf:**
 - 73% yield, er > 99:1
- **X = Br:**
 - 60% yield, er > 99:1
- **X = OTI:**
 - 81% yield, er > 99:1
- **X = OTI:**
 - 47% yield, er = 99:1

Derivatizations of alkylB(mac):

1. **B(mac)PH**
 - PhLi, THF then Pd(OAc)₂ (1 mol%), ligand (1.2 mol%), 4-MeOPhOTf, CsF, THF, 40 °C, 15 h
 - 70% yield, dr > 20:1 (according to oxidized product)

2. **B(mac)Boc**
 - NaOH, H₂O₂, THF, r.t., 4 h
 - 92% yield

3. **B(mac)Boc**
 - MeONH₂, n-BuLi, THF, 60 °C, 15 h then BocCl
 - 89% yield

4. **B(mac)Boc**
 - BrCH₂Cl, n-BuLi, NaOTf, THF
 - 84% yield

Synthesis of (+)-obtusafuran:

- **cat. Pd(OAc)₂**
 - Li₂CO₃, PhI(OAc)₂, C₆F₆, 100 °C, 24 h then TBAF
 - 68% yield, dr > 20:1
- **cat. Pd(OAc)₂**
 - OTIPS, PhNH₂, THF, 100 °C, 24 h then TBAB
 - 40% yield, er > 99:1