Diastereo- and Enantioselective Conjunctive Cross-Coupling via a Metalate Shift

Significance: The authors describe a conjunctive cross-coupling process to access products with vicinal stereogenic centers. This method avoids the generation of Suzuki–Miyaura stilbene byproducts obtained when typical boronic esters are employed.

Comment: Products are obtained in moderate yields and excellent enantio- and diastereoselectivities. The synthetic utility of the –B(mac) handle is demonstrated. Additionally, this methodology was used for the synthesis of (+)-obtusafuran.

Selected examples:
- **X = OTf, 73% yield**
 - er > 99:1
- **X = OTf, 81% yield**
 - er > 99:1
- **X = Br, 58% yield**
 - er > 99:1
- **X = OTf, 64% yield**
 - er > 99:1
- **X = OTf, 47% yield**
 - er > 99:1
- **X = OTf, 60% yield**
 - er > 99:1
- **X = OTf, 81% yield**
 - er > 99:1
- **X = OTf, 58% yield**
 - er > 99:1
- **X = OTf, 60% yield**
 - er > 99:1

Derivatizations of alkylB(mac):
- **PhLi, THF**
 - then
 - Pd(OCOCF3) (1 mol%) **ligand** (1.2 mol%) 4-MeOPhOTf, CsF
 - THF, 40 °C, 15 h
 - 70% yield, dr > 20:1
 - er > 99:1 (according to oxidized product)

Synthesis of (+)-obtusafuran:
- **cat. Pd(OCOCF3)**
 - Li2CO3, PhI(OAc)2
 - C6F6, 100 °C, 24 h
 - then TBAF
 - 68% yield
 - dr > 20:1

Synfacts Contributors: Mark Lautens, José F. Rodríguez

Synfacts 2019, 15(02), 0147 Published online: 18.01.2019

DOI: 10.1055/s-0037-1611997; **Reg-No.:** L16818SF