Synthesis 2019; 51(10): 2107-2115
DOI: 10.1055/s-0037-1612217
feature
© Georg Thieme Verlag Stuttgart · New York

Silanediol Anion Binding and Enantioselective Catalysis

Jonathan W. Attard
a   Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01609, USA   Email: aemattson@wpi.edu
,
Kohei Osawa
b   Yamagata University, Department of Biochemical Engineering, Graduate School of Science and Engineering, Yonezawa, Yamagata 992-8510, Japan
,
Yong Guan
a   Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01609, USA   Email: aemattson@wpi.edu
,
Jessica Hatt
a   Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01609, USA   Email: aemattson@wpi.edu
,
Shin-ichi Kondo
b   Yamagata University, Department of Biochemical Engineering, Graduate School of Science and Engineering, Yonezawa, Yamagata 992-8510, Japan
,
Anita Mattson*
a   Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01609, USA   Email: aemattson@wpi.edu
› Author Affiliations
The National Science Foundation (1362030), the National Institutes of Health (1R35GM12480401), and Worcester Polytechnic Institute (WPI) are gratefully acknowledged for providing support for our studies. K.O. was supported by a fellowship from Yamagata University to study in the Mattson laboratory to complete these investigations. J.W.A. was supported by a WPI global scholars fellowship to complete investigations in the Kondo laboratory. J.H. is grateful for a WPI Summer Undergraduate Research Fellowship that supported her contribution to this project.
Further Information

Publication History

Received: 11 January 2019

Accepted after revision: 14 January 2019

Publication Date:
12 March 2019 (online)


Abstract

Silanediols possess unique and complementary catalytic activity in reactions that are likely to proceed through anion binding. This article directly compares silanediols, thioureas, and squaramides in three separate anion-binding processes. The catalytic abilities of select members of each family are directly correlated to association constants.

Supporting Information

 
  • References


    • For recent reviews on silanediols, see:
    • 1a Wieting JM, Hardman-Baldwin AM, Visco MD, Mattson AE. Aldrichimica Acta 2016; 49: 15
    • 1b Franz AK, Wilson SO. J. Med. Chem. 2013; 56: 388
    • 1c Sieburth SM, Chen C.-A. Eur. J. Org. Chem. 2006; 311
    • 1d Min GK, Heranandez D, Skryidstrup T. Acc. Chem. Res. 2013; 46: 457
  • 2 Kondo S, Harada T, Tanaka R, Unno M. Org. Lett. 2006; 8: 4621
  • 3 For a recent example of silanediols involved in sensing, see: Kondo S, Hie Y, Yamaura M. Org. Lett. 2013; 15: 520

    • For selected examples of silanediols involved in achiral catalysis, see:
    • 4a Tran NT, Min T, Franz AK. Chem. Eur. J. 2011; 17: 9897
    • 4b Schafer AG, Wieting JM, Mattson AE. Org. Lett. 2011; 13: 5228
    • 4c Hardman-Baldwin AM, Mattson AE. ChemSusChem 2014; 7: 3275

      For reviews on anion-binding catalysis, see:
    • 5a Visco MD, Attard J, Guan Y, Mattson AE. Tetrahedron Lett. 2017; 58: 2623
    • 5b Busschaert N, Caltagirone C, Van Rossom W, Gale PA. Chem. Rev. 2015; 115: 8038
    • 5c Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534

      For examples of silanediols plausibly involved in enantioselective anion-binding catalysis, see:
    • 6a Guan Y, Attard JW, Visco MD, Fisher TJ, Mattson AE. Chem. Eur. J. 2018; 24: 7123
    • 6b Hardman-Baldwin AM, Visco MD, Wieting JM, Stern C, Kondo S, Mattson AE. Org. Lett. 2016; 18: 2883
    • 6c Wieting JM, Fisher TJ, Schafer AG, Visco MD, Galluci JC, Mattson AE. Eur. J. Org. Chem. 2015; 525
    • 6d Schafer AG, Wieting JM, Fisher TJ, Mattson AE. Angew. Chem. Int. Ed. 2013; 52: 11321

      For select examples of processes plausibly proceeding through thiourea anion binding catalysis, see:
    • 7a Park Y, Harper KC, Kuhl N, Kwan EE, Liu RY, Jacobsen EN. Science 2017; 355: 162
    • 7b Jarvis CL, Hirschi JS, Vetticatt MJ, Seidel D. Angew. Chem. Int. Ed. 2017; 56: 2670
    • 7c Kennedy CR, Kehnerr D, Rajapaksa NS, Ford DD, Park Y, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 13525
    • 7d Zhao C, Chen SB, Seidel D. J. Am. Chem. Soc. 2016; 138: 9053
    • 7e Reisman SE, Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 7198
    • 7f De CK, Clauber EG, Seidel D. J. Am. Chem. Soc. 2009; 131: 17060
    • 7g Taylor MS, Tokunaga N, Jacobsen EN. Angew. Chem. Int. Ed. 2005; 44: 6700

      For examples of plausible enantioselective squaramide anion binding catalysis, see:
    • 8a Wendlandt AE, Vangal P, Jacobsen EN. Nature 2018; 556: 447
    • 8b Banik SM, Levina A, Hyde AM, Jacobsen EN. Science 2017; 358: 761
    • 8c Liu RY, Wasa M, Jacobsen EN. Tetrahedron Lett. 2015; 56: 3428
  • 9 Kotke M, Schreiner PR. Tetrahedron 2006; 62: 434
  • 10 Raheem IT, Thiara PV, Peterson EA, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 13404
    • 11a Fischer T, Bamberger J, Gomez-Martinez M, Piekarski DG, Mancheno O. Angew. Chem. Int. Ed. 2018; 57 DOI: in press; 10.1002/anie.201812031.
    • 11b Fischer T, Duang Q.-N, Mancheno OG. Chem. Eur. J. 2017; 23: 5983
    • 11c Mancheno OG, Asmus S, Zurro M, Fischer T. Angew. Chem. Int. Ed. 2015; 54: 8823
    • 11d Zurro M, Asmus S, Beckendorf S, Muck-Lichtenfeld C, Mancheno OG. J. Am. Chem. Soc. 2014; 136: 13999
    • 11e Ohmatus K, Kiyokawa M, Ooi T. J. Am. Chem. Soc. 2011; 133: 1307
    • 11f Ohmatsu J, Ando Y, Ooi T. J. Am. Chem. Soc. 2013; 135: 18706

      For reviews including naturally occurring bioactive chromanones and tetrahydroxanthones, see:
    • 12a Masters KS, Brase S. Chem. Rev. 2012; 112: 3717
    • 12b Wezeman T, Brase S, Masters KS. Nat. Prod. Rep. 2015; 32: 6
  • 13 Thiourea 11 and squaramide 12 were employed in these studies so that a stronger UV/Vis response may be observed.
  • 14 Knowles RR, Lin S, Jacobsen EN. J. Am. Chem. Soc. 2010; 132: 5030
  • 15 Corrected for 5:1 silanediol:Et2O content.