Total Chemical Synthesis of a Glycoprotein by Native Chemical Ligation

Significance: The authors have developed a new approach for the synthesis of unprotected thioesters by using Fmoc-based solid-phase peptide synthesis and have demonstrated its utility in the total synthesis of a glycosylated protein, the antimicrobial O-linked glycoprotein diptericin, by the native chemical ligation method. This method utilizes an alkanesulfonamide ‘safety-catch’ linker, which circumvented the problems associated with the incompatibility of glycosidic linkages with Boc chemistry and of thioesters with Fmoc chemistry.

Comment: The C-terminal residue of the peptide is attached to the resin through an acid- and base-stable N-acyl sulfonamide linkage. After peptide synthesis, the sulfonamide is activated by cyano-methylation and then cleaved with a thiol nucleophile. This general synthetic approach permits access to unprecedented quantities of homogeneous glycoproteins.

SYNFACTS Contributors: Hisashi Yamamoto, Manthena Chaithanya

Synfacts 2019, 15(04), 455 Published online: 19.03.2019
DOI: 10.1055/s-0037-1612281; Reg-No.: H01119SF

Category
Peptide Chemistry

Key words
native chemical ligation
thioesters
Fmoc chemistry
glycoproteins
alkanesulfonamides