Palladium-Catalyzed Site-Selective γ-C(sp3)–H Silylation of Peptides

Significance: Chemically modified unnatural peptides are often endowed with improved biological and pharmacokinetic properties and are therefore valuable in the drug-discovery process. Modification by silicon-containing groups appears to be promising, because the presence of a silicon moiety in amino acids or peptides can help to improve permeation through membranes and increase proteolytic stability.

Comment: Shi and co-workers have developed an efficient procedure for the synthesis of various γ-silyl-α-amino acids and oligopeptides by palladium(II)-catalyzed γ-C(sp3)–H silylation. The present site-specific late-stage C(sp3)–H functionalization is assisted by a picolinamide auxiliary and uses cheap and commercially available hexamethyldisilane as a silylating agent. Compatibility with a broad range of amino acid residues and the facile removal of the picolinamide auxiliary are noteworthy features of the present protocol.

SYNFACTS Contributors: Hisashi Yamamoto, Sachin Suresh Bhojgude

SYNFACTS 2019, 15(06), 0685 Published online: 20.05.2019
DOI: 10.1055/s-0037-1612531; Reg-No.: H03219SF

Category
Peptide Chemistry

Key words
late-stage functionalization
peptide modification
silylation
palladium catalysis
C–H activation