G. CAHIEZ*, H. AVEDISSIAN (ECOLE SUPÉRIEURE DE CHIMIE ORGANIQUE ET MINÉRALE, CERGY-PONTOISE, FRANCE)
Highly Stereo- and Chemoselective Iron-Catalyzed Alkenylation of Organomagnesium Compounds
Synthesis 1998, 1199-1205.

Iron-Catalyzed Alkenylation of Organomagnesium Reagents

$R^{1}, R^{2}, R^{3}=H, A l k, A r$
$\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$

Selected examples:

75% yield, $E / Z>99: 1$
80\% yield, ZIE > 99:1
89% yield

82% yield

86% yield
73% yield

84% yield

75% yield

68% yield

79% yield

80% yield

Category

Metals in Synthesis

Key words

cross-coupling
iron catalysis
magnesium

Synfact

72% yield

79\% yield

Significance: In 1998, Cahiez and Avedissian reported a general method for the iron-catalyzed cross-coupling between alkenyl halides (halide $=\mathrm{Cl}$, Br , or I) and Grignard reagents in high yields and excellent diastereoselectivities (>99:1).

Comment: The approach significantly improved the cross-coupling between alkenyl halides and Grignard reagents using $\mathrm{Fe}(\mathrm{acac})_{3}$ as catalyst. Additionally, it was found that the use of a polar co-solvent such as NMP was crucial for the cross-coupling to proceed in excellent yields. Furthermore, functional groups such as ketones were tolerated for the first time in these cross-coupling reactions (see Review below).

Review: C. Bolm, J. Legros, J. Le Paih, L. Zani Chem. Rev. 2004, 104, 6217-6254.

