J Pediatr Infect Dis 2018; 13(01): 010-014
DOI: 10.1055/s-0037-1612605
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Might miRNAs Be Related to Mother-to-Child Transmission of HIV-1? A Short Review on Putative Viral miRNAs Encoded by HIV-1

Ayşe Rüveyda Uğur
1   Division of Medical Virology, Department of Medical Microbiology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
,
Mehmet Özdemir
1   Division of Medical Virology, Department of Medical Microbiology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
› Author Affiliations
Further Information

Publication History

19 October 2017

07 November 2017

Publication Date:
11 December 2017 (online)

Abstract

MicroRNAs (miRNAs) are single-stranded small noncoding RNA molecules that are 22 to 25 nucleotides in length. They are implicated in the regulation of the immune response by modulating differentiation and proliferation of immune cells, production of cytokine types, and activation of the intracellular signaling pathways through posttranscriptional mechanisms. Although their actual functions are not yet fully understood, viral miRNAs are thought to help viruses to replicate and evade host immune response important in infectiousness. The determinants affecting the infectiousness of human immunodeficiency virus-1 (HIV-1) and progression to the disease state vary according to several host and viral factors. Interestingly, mother-to-child transmission rates are as low as 5 to 15%, even when the mother is not receiving antiretroviral therapy. Higher HIV-1 viral loads, and recent maternal infection, are associated with higher transmission rates. Also, cellular tropism is a well-known phenomenon in HIV-1 pathogenesis. Further, cellular and viral miRNAs seem to be involved in the pathogenesis and infectiousness of HIV-1. The aim of this review is to outline the history of the discovery of HIV-1-viral miRNAs and the evidence for their role in pathogenesis.

 
  • References

  • 1 Zamore PD. Plant RNAi: how a viral silencing suppressor inactivates siRNA. Curr Biol 2004; 14 (05) R198-R200
  • 2 Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15 (08) 509-524
  • 3 Skalsky RL, Cullen BR. Viruses, microRNAs, and host interactions. Annu Rev Microbiol 2010; 64: 123-141
  • 4 Detsika MG, Psarris A, Paraskevis D. MicroRNAs and HIV latency: a complex and promising relationship. AIDS Rev 2012; 14 (03) 188-194
  • 5 Pedersen I, David M. MicroRNAs in the immune response. Cytokine 2008; 43 (03) 391-394
  • 6 Triboulet R, Mari B, Lin YL. , et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 2007; 315 (5818): 1579-1582
  • 7 Swaminathan G, Navas-Martín S, Martín-García J. MicroRNAs and HIV-1 infection: antiviral activities and beyond. J Mol Biol 2014; 426 (06) 1178-1197
  • 8 Hu WS, Hughes SH. HIV-1 reverse trans cription. Cold Spring Harb Perspect Med 2012; 2 (10) a006882
  • 9 Groen JN, Morris KV. Chromatin, non-coding RNAs, and the expression of HIV. Viruses 2013; 5 (07) 1633-1645
  • 10 Laspia MF, Rice AP, Mathews MB. HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 1989; 59 (02) 283-292
  • 11 Ouellet DL, Plante I, Landry P. , et al. Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res 2008; 36 (07) 2353-2365
  • 12 Brigati C, Giacca M, Noonan DM, Albini A. HIV Tat, its TARgets and the control of viral gene expression. FEMS Microbiol Lett 2003; 220 (01) 57-65
  • 13 Kessler M, Mathews MB. Premature termination and processing of human immunodeficiency virus type 1-promoted transcripts. J Virol 1992; 66 (07) 4488-4496
  • 14 Omoto S, Fujii YR. Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J Gen Virol 2005; 86 (Pt 3): 751-755
  • 15 He S, Yang Z, Skogerbo G. , et al. The properties and functions of virus encoded microRNA, siRNA, and other small noncoding RNAs. Crit Rev Microbiol 2008; 34 (3–4): 175-188
  • 16 Yeung ML, Bennasser Y, Le SY, Jeang KT. siRNA, miRNA and HIV: promises and challenges. Cell Res 2005; 15 (11–12): 935-946
  • 17 Schopman NC, Willemsen M, Liu YP. , et al. Deep sequencing of virus-infected cells reveals HIV-encoded small RNAs. Nucleic Acids Res 2012; 40 (01) 414-427
  • 18 Hsu PW, Lin LZ, Hsu SD, Hsu JB, Huang HD. ViTa: prediction of host microRNAs targets on viruses. Nucleic Acids Res 2007; 35 (Database issue): D381-D385
  • 19 Li SC, Shiau CK, Lin WC. Vir-Mir db: prediction of viral microRNA candidate hairpins. Nucleic Acids Res 2008; 36 (Database issue): D184-D189
  • 20 Pfeffer S, Zavolan M, Grässer FA. , et al. Identification of virus-encoded microRNAs. Science 2004; 304 (5671): 734-736
  • 21 Pfeffer S, Sewer A, Lagos-Quintana M. , et al. Identification of microRNAs of the herpesvirus family. Nat Methods 2005; 2 (04) 269-276
  • 22 Lin J, Cullen BR. Analysis of the interaction of primate retroviruses with the human RNA interference machinery. J Virol 2007; 81 (22) 12218-12226
  • 23 Bennasser Y, Le SY, Yeung ML, Jeang KT. HIV-1 encoded candidate micro-RNAs and their cellular targets. Retrovirology 2004; 1: 43
  • 24 Couturier JP, Root-Bernstein RS. HIV may produce inhibitory microRNAs (miRNAs) that block production of CD28, CD4 and some interleukins. J Theor Biol 2005; 235 (02) 169-184
  • 25 Omoto S, Ito M, Tsutsumi Y. , et al. HIV-1 nef suppression by virally encoded microRNA. Retrovirology 2004; 1: 44
  • 26 Yeung ML, Bennasser Y, Watashi K, Le SY, Houzet L, Jeang KT. Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid. Nucleic Acids Res 2009; 37 (19) 6575-6586
  • 27 Chendrimada TP, Gregory RI, Kumaraswamy E. , et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005; 436 (7051): 740-744
  • 28 Klase Z, Kale P, Winograd R. , et al. HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol 2007; 8: 63
  • 29 Purzycka KJ, Adamiak RW. The HIV-2 TAR RNA domain as a potential source of viral-encoded miRNA. A reconnaissance study. Nucleic Acids Symp Ser (Oxf) 2008; (52) 511-512
  • 30 Klase Z, Winograd R, Davis J. , et al. HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression. Retrovirology 2009; 6: 18
  • 31 Ouellet DL, Vigneault-Edwards J, Létourneau K. , et al. Regulation of host gene expression by HIV-1 TAR microRNAs. Retrovirology 2013; 10: 86
  • 32 Li YP. Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J Virol 1997; 71 (05) 4098-4102
  • 33 Fankhauser C, Izaurralde E, Adachi Y, Wingfield P, Laemmli UK. Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol 1991; 11 (05) 2567-2575
  • 34 Bennasser Y, Le SY, Benkirane M, Jeang KT. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 2005; 22 (05) 607-619
  • 35 Harwig A, Jongejan A, van Kampen AH, Berkhout B, Das AT. Tat-dependent production of an HIV-1 TAR-encoded miRNA-like small RNA. Nucleic Acids Res 2016; 44 (09) 4340-4353
  • 36 Vongrad V, Imig J, Mohammadi P. , et al. HIV-1 RNAs are not part of the argonaute 2 associated RNA interference pathway in macrophages. PLoS One 2015; 10 (07) e0132127
  • 37 Zhang Y, Fan M, Geng G. , et al. A novel HIV-1-encoded microRNA enhances its viral replication by targeting the TATA box region. Retrovirology 2014; 11: 23
  • 38 Arendt CW, Littman DR. HIV: master of the host cell. Genome Biol 2001; 2 (11) S1030
  • 39 You X, Zhang Z, Fan J, Cui Z, Zhang XE. Functionally orthologous viral and cellular microRNAs studied by a novel dual-fluorescent reporter system. PLoS One 2012; 7 (04) e36157
  • 40 Hariharan M, Scaria V, Pillai B, Brahmachari SK. Targets for human encoded microRNAs in HIV genes. Biochem Biophys Res Commun 2005; 337 (04) 1214-1218
  • 41 Whisnant AW, Bogerd HP, Flores O. , et al. In-depth analysis of the interaction of HIV-1 with cellular microRNA biogenesis and effector mechanisms. MBio 2013; 4 (02) e000193
  • 42 Aqil M, Mallik S, Bandyopadhyay S, Maulik U, Jameel S. Transcriptomic analysis of mRNAs in human monocytic cells expressing the HIV-1 nef protein and their exosomes. BioMed Res Int 2015; 2015: 492395
  • 43 Walker B, McMichael A. The T-cell response to HIV. Cold Spring Harb Perspect Med 2012; 2 (11) a007054
  • 44 Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell 2009; 136 (01) 26-36
  • 45 Song L, Liu H, Gao S, Jiang W, Huang W. Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol 2010; 84 (17) 8849-8860
  • 46 Duskova K, Nagilla P, Le HS. , et al. MicroRNA regulation and its effects on cellular transcriptome in human immunodeficiency virus-1 (HIV-1) infected individuals with distinct viral load and CD4 cell counts. BMC Infect Dis 2013; 13: 250
  • 47 Yu HR, Hsu TY, Huang HC. , et al. Comparison of the functional microRNA expression in immune cell subsets of neonates and adults. Front Immunol 2016; 7: 615
  • 48 The Working Group on Mother-To-Child Transmission of HIV. Rates of mother-to-child transmission of HIV-1 in Africa, America, and Europe: results from 13 perinatal studies. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 8 (05) 506-510
  • 49 Garcia PM, Kalish LA, Pitt J. , et al; Women and Infants Transmission Study Group. Maternal levels of plasma human immunodeficiency virus type 1 RNA and the risk of perinatal transmission. N Engl J Med 1999; 341 (06) 394-402
  • 50 Taha TE, James MM, Hoover DR. , et al. Association of recent HIV infection and in utero HIV-1 transmission: Findings from the PEPI-Malawi trial. AIDS (London, England) 2011; 25 (11) 1357-1364 . doi:10.1097/QAD.0b013e3283489d45.
  • 51 Hou PC, Yu HR, Kuo HC. , et al. Different modulating effects of adenosine on neonatal and adult polymorphonuclear leukocytes. Sci World J 2012; 2012: 387923
  • 52 Yu HR, Kuo HC, Huang HC. , et al. Identification of immunodeficient molecules in neonatal mononuclear cells by proteomic differential displays. Proteomics 2011; 11 (17) 3491-3500
  • 53 Yu HR, Kuo HC, Huang LT. , et al. L-Arginine modulates neonatal lymphocyte proliferation through an interleukin-2 independent pathway. Immunology 2014; 143 (02) 184-192
  • 54 Allantaz F, Cheng DT, Bergauer T. , et al. Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression. PLoS One 2012; 7 (01) e29979