Thromb Haemost 1998; 79(05): 943-948
DOI: 10.1055/s-0037-1615099
Review Article
Schattauer GmbH

Partial Reconstitution of Factor VIII Activity from a Mild Crm+ Hemophilia A Patient by Replacement of the Defective A2 Domain

W. C. Pieneman
1   From the Hemostasis and Thrombosis Research Center, Department of Hematology, University Hospital Leiden, Leiden, The Netherlands
,
P. Fay
2   From the Department of Medicine, University of Rochester, Rochester, NY, USA
,
E. Briët**
1   From the Hemostasis and Thrombosis Research Center, Department of Hematology, University Hospital Leiden, Leiden, The Netherlands
,
P. H. Reitsma***
1   From the Hemostasis and Thrombosis Research Center, Department of Hematology, University Hospital Leiden, Leiden, The Netherlands
,
R. M. Bertina
1   From the Hemostasis and Thrombosis Research Center, Department of Hematology, University Hospital Leiden, Leiden, The Netherlands
› Author Affiliations
Further Information

Publication History

Received 23 September 1996

Accepted after revision 17 December 1997

Publication Date:
07 December 2017 (online)

Summary

We further characterised the abnormal factor VIII molecule (factor VIII Leiden) of a Crm+, mild hemophilia A patient with a factor VIII activity of 0.18 IU/ml and a factor VIII antigen of 0.95 IU/ml. Mutation analysis of the coding region, promoter and 3’ untranslated region of the factor VIII gene revealed the presence of a C to T substitution at codon 527. This nucleotide change predicts the replacement of an arginine to tryptophan in the A2 domain close to a suggested binding site for factor IXa. Since a previous study of this mutant factor VIII protein suggested that this protein had a reduced affinity for factor IXa, position 527 in the protein might be involved in the interaction with factor IXa.

In this study we gathered evidence for our hypothesis that the Arg to Trp mutation at position 527 is the cause of the reduced activity of factor VIII Leiden. Replacement of the mutated A2 domain by wild type A2 domain partially corrected the defect.

Factor VIII from normal and factor VIII Leiden plasma was concentrated by cryoprecipitation, activated with thrombin and incubated with excess wild type A2 domain. Competition with excess isolated human A2 domain resulted in a partial reconstitution of the factor VIIIa activity of thrombin treated factor VIII Leiden. This supports the hypothesis that the mutation in the A2 domain is the cause of the reduced factor VIII activity.

* Present adress: Dr. W. C. Pieneman, University of Nijmegen, Department of Cellbiology, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands


** Present adress: Dr. E. Briët, Department of Internal Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands


*** Present adress: Dr. P. H. Reitsma, Laboratory for Experimental Internal Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands


 
  • References

  • 1 Furie B, Furie BC. The molecular basis of blood coagulation. Cell 1988; 53: 505-18.
  • 2 Fay PJ. Factor VIII structure and function. Thromb Haemost 1993; 70: 63-7.
  • 3 Wood WI, Capon DJ, Simonsen CC, Eaton DL, Gitschier J, Keyt B, Seeburg PH, Smith DH, Hollingshead P, Wion KL, Delwart E, Tuddenham EGD, Vehar GA, Lawn RM. Expression of active human factor VIII from recombinant DNA clones. Nature 1984; 312: 330-7.
  • 4 Eaton DH, Rodríguez H, Vehar GA. Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochemistry 1986; 25: 505-12.
  • 5 Lollar P, Parker CG. Subunit structure of thrombin-activated porcine factor VIII. Biochemistry 1989; 28: 666-74.
  • 6 Fay PJ, Haidaris PJ, Smudzin TM. Human factor VIIIa subunit structure. Reconstitution of factor VIIIa from the isolated A1/A3-C1-C2 dimer and A2 subunit. J Biol Chem 1991; 266: 8957-62.
  • 7 Pittman DD, Millenson M, Marquette K, Bauer K, Kaufman RJ. A2 domain of human recombinant-derived factor VIII is required for procoagulant activity but not for thrombin cleavage. Blood 1992; 79: 389-97.
  • 8 Fay PJ, Smudzin TM. Characterization of the interaction between the A2 subunit and A1/A3-C1-C2 dimer in human factor VIIIa. J Biol Chem 1992; 267: 13246-50.
  • 9 Lollar P, Parker CG. pH-dependent denaturation of thrombin activated porcine factor VIII. J Biol Chem 1990; 265: 1688-92.
  • 10 O’Brien DP, Johnson D, Byfield P, Tuddenham EGD. Inactivation of factor VIII by factor IXa. Biochemistry 1992; 31: 2805-12.
  • 11 Lamphear BJ, Fay PJ. Proteolytic interactions of factor IXa with human factor VIII and factor VIIIa. Blood 1992; 80: 3120-6.
  • 12 Fay PJ, Haidaris PJ, Huggins CF. Role of the COOH-terminal acidic region of A1 subunit in A2 subunit retention in human factor VIIIa. J Biol Chem 1993; 268: 17861-6.
  • 13 Fay PJ, Smudzin TM, Walker FJ. Activated protein C-catalyzed inactivation of human factor VIII and factor VIIIa. J Biol Chem 1991; 266: 20139-45.
  • 14 McGinniss MJ, Kazazian HH, Hoyer LW, Bi L, Inaba H, Antonarakis SE. Spectrum of mutations in CRM-positive and CRM-reduced hemophilia A. Genomics 1993; 15: 392-8.
  • 15 Arai M, Inaba H, Higuchi M, Antonarakis SE, Kazazian Jr. HH, Fujimaki M, Hoyer LW. Direct characterization of factor VIII in plasma: Detection of a mutation altering a thrombin cleavage site (arginine-372 to histidine). Proc Natl Acad Sci USA 1989; 86: 4277-81.
  • 16 O’Brien DP, Tuddenham EGD. Purification and characterization of factor VIII 1,689-Cys: A nonfunctional cofactor occurring in a patient with severe hemophilia A. Blood 1989; 73: 2117-22.
  • 17 Johnson DJD, Pemberton S, Acquila M, Mori PG, Tuddenham EGD, O’Brien DP. Factor VIII S373L: Mutation at P1’ site confers thrombin cleavage resistance, causing mild haemophilia A. Thromb Haemost 1994; 71: 428-33.
  • 18 Higuchi M, Wong C, Kochan L, Olek K, Aronis S, Kasper CK, Kazazian Jr. HH, Antonarakis SE. Characterization of mutations in the factor VIII gene by direct sequencing of amplified genomic DNA. Genomics 1990; 6: 65-71.
  • 19 Aly AM, Higuchi M, Kasper CK, Kazazian Jr. HH, Antonarakis SE, Hoyer LW. Hemophilia A due to mutations that create new N-glycosylation sites. Proc Natl Acad Sci USA 1992; 89: 4933-7.
  • 20 Pittman DD, Kaufman RJ. Proteolytic requirements for thrombin activation of anti-hemophilic factor (factor VIII). Proc Natl Acad Sci USA 1988; 85: 2429-33.
  • 21 Pittman DD, Kaufman RJ. Structure-function relationships of factor VIII elucidated through recombinant DNA technology. Thromb Haemost 1989; 61: 161-5.
  • 22 Precup JW, Kline BC, Fass DN. A monoclonal antibody to factor VIII inhibits von Willebrand Factor binding and thrombin cleavage. Blood 1991; 77: 1929-36.
  • 23 Lollar P, Hill-Eubanks DC, Parker CG. Association of the factor VIII light chain with von Willebrand factor. J Biol Chem 1988; 263: 10451-5.
  • 24 Foster PA, Fulcher CA, Houghten RA, Zimmerman TS. An immunogenic region within residues Val1670-Glu1684 of the factor VIII light chain induces antibodies which inhibit binding of factor VIII to von Willebrand factor. J Biol Chem 1988; 263: 5230-4.
  • 25 Walker FJ, Scandella D, Fay PJ. Identification of the binding site for activated protein C on the light chain of factor VIII. J Biol Chem 1990; 265: 1484-9.
  • 26 Mertens K, Wijngaarden Av, Bertina RM, Veltkamp JJ. The functional defect of factor VIII Leiden, a genetic variant of coagulation factor VIII. Thromb Haemost 1985; 54: 650-3.
  • 27 Pieneman WC, Deutz-Terlouw PP, Reitsma PH, Briët E. Screening for mutations in haemophilia A patients by multiplex PCR-SSCP, Southern blotting and RNA analysis: The detection of a genetic abnormality in the factor VIII gene in 30 out of 35 patients. Br J Haematol 1995; 90: 442-9.
  • 28 Muller HP, Van Tilburg NH, Bertina RM, Veltkamp JJ. Heterogeneity of haemophilia A: a study with three different antisera. Br J Haematol 1982; 52: 485-94.
  • 29 Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from nucleated cells. Nucleic Acids Res 1988; 16: 1215-8.
  • 30 Reitsma PH, Mandalaki T, Kasper CK, Bertina RM, Briët E. Two novel point mutations correlate with an altered developmental expression of blood coagulation factor IX (hemophilia B Leyden phenotype). Blood 1989; 73: 743-6.
  • 31 Hoeben RC, Jagt RCM, Schoute F, Tilburg NHv, Verbeet MP, Briët E, Ormondt Hv, Eb AJv.. Expression of functional factor VIII in primary human skin fibroblasts after retrovirus-mediated gene transfer. J Biol Chem 1990; 265: 7318-23.
  • 32 Leyte A, Mertens K, Distel B, Evers RF, De Keyzer-Nellen MJM, GroenenVan Dooren MMCL, De Bruin J, Pannekoek H, Van Mourik JA, Verbeet MP. Inhibition of human coagulation factor VIII by monoclonal antibodies. Mapping of functional epitopes with the use of recombinant factor VIII fragment. Biochem J 1989; 263: 187-94.
  • 33 Veltkamp JJ, Drion EF, Loeliger EA. Detection of the carrier state in hereditary coagulation disorders I. Thromb Diathes haemorrh 1968; 19: 279-303.
  • 34 Rothschild C, Amiral J, Adams M, Meyer D. Preparation of FVIII-depleted plasma with antibodies and its use for the assay of factor VIII. Haemostasis 1990; 20: 321-8.
  • 35 Kemball-Cook G, Tuddenham EGD. The factor VIII mutation database on the world wide web: the haemophilia A mutation search, test and resource site. HAMSTeRS update (version 3. 0). Nucleic Acids Res 1997; 25: 128-32 URL:http://europeum.mrc.rpms.ac.uk
  • 36 Fay PJ, Beattie T, Huggins CF, Regan LM. Factor VIIIa A2 subunit residues 558-565 represent a factor IXa interactive site. J Biol Chem 1994; 269: 20522-7.
  • 37 Pemberton S, Lindley P, Zaitsev V, Card G, Tuddenham EGD, Kemball-Cook G. A molecular model for the triplicated A domains of human factor VIII based on the crystal structure of human ceruloplasmin. Blood 1997; 89: 2413-21.
  • 38 Lenting PJ, Vandeloo JWHP, Donath MJSH, Van Mourik JA, Mertens K. The sequence Glu (1811)-Lys(1818) of human blood coagulation factor VIII comprises a binding site for activated factor IX. J Biol Chem 1996; 4: 1935-40.
  • 39 O’Brien LM, Medved LV, Fay PJ. Localization of factor IXa and factor VIIIa interactive sites. J Biol Chem 1995; 45: 27087-92.