Kinder- und Jugendmedizin 2016; 16(04): 258-266
DOI: 10.1055/s-0037-1616328
Endokrinologie
Schattauer GmbH

Das Adrenogenitale Syndrom (AGS) im Kindes- und Jugendalter

Congenital adrenal hyperplasia (CAH) during infancy and childhood
H. G. Dörr
1   Kinder- und Jugendklinik der Friedrich Alexander-Universität Erlangen-Nürnberg
› Author Affiliations
Further Information

Publication History

Eingereicht am: 07 March 2016

angenommen am: 13 March 2016

Publication Date:
11 January 2018 (online)

Zusammenfassung

Verschiedene autosomal-rezessiv vererbte Enzymdefekte der adrenalen Kortisolbiosynthese werden unter dem Adrenogenitalen Syndrom (AGS) zusammengefasst. In mehr als 90 % der Fälle liegt ein Defekt der 21-Hydroxylase zugrunde, wobei man eine klassische und eine nicht-klassische Form unterscheidet. Bei der klassischen Form des AGS unterscheidet man zwei Verlaufsformen, eine mit Salzverlust und eine ohne Salzverlust. Das AGS wird durch Mutationen im aktiven 21-Hydroxylase-Gen (CYP21A2) auf dem Chromosom 6 verursacht. Beim klassischen AGS ist das äußere Genitale der Mädchen bei Geburt vermännlicht. Bei der Salzverlustform kommt es bei beiden Geschlechtern in den ersten Lebenswochen zu einer Salzverlustkrise. Die Symptome der Patienten mit nichtklassischem AGS sind durch die vermehrte Androgensekretion charakterisiert, wobei das äußere Genitale der Mädchen bei Geburt unauffällig ist. Je nach Enzymdefekt kann die Diagnose durch ein charakteristisches Steroidprofil im Plasma/Serum oder im Harn gesichert werden. Für das klassische AGS mit 21-Hydroxylase-Defekt ist die massive Erhöhung von 17-Hydroxyprogesteron (17OHP) im Serum beweisend. Im Neugeborenenscreening wird daher am 3. Lebenstag im Vollblut 17OHP bestimmt. Die medikamentöse Therapie wird im Kindesalter mit Hydrokortison und beim Salzverlustsyndrom zusätzlich mit einem Mineralokortikoid (9α-Fludrokortison) durchgeführt. Bei Umstellung auf ein anders Glukokortikoid muss die Äquivalenzdosis beachtet werden. Die pränatale Therapie ist nach wie vor eine experimentelle Therapie. Eine enge Zusammenarbeit aller Beteiligten ist notwendig, um die Ziele der Therapie im Kindes- und Jugendalter umzusetzen. Der Übergang in die Erwachsenenmedizin muss klar geregelt sein.

Summary

Congenital adrenal hyperplasia (CAH) comprises a group of autosomal recessive disorders in which there is a deficiency of one of the enzymes necessary for adrenal cortisol biosynthesis. For more than 90 % of CAH cases, deficiency of 21-hydroxylase activity is the most common cause. The other enzyme defects are exceedingly rare. The classic CAH with 21-OH-deficiency occurs in two forms as CAH with salt-wasting syndrome (SW) and as uncomplicated CAH without SW. The mean incidence is about 1:14 000. The classic CAH is characterized by adrenal overproduction and inadequate production of glucocorticoids and mineralocorticoids (SW form). Female CAH neonates have ambiguous external genitalia. SW crisis starts usually between weeks 2 and 3 of life. Since 2005, there is a general newborn screening in Germany with measurement of 17OHP in dry blood on filter paper. The non-classic CAH is characterized only by the increased adrenal androgen secretion. Girls often virilize just before the beginning or during puberty. The diagnosis can be made by specific steroid analyses in serum/plasma or urine. Treatment of choice in all forms of CAH is lifelong substitution with glucocorticoids. During childhood, physiological hydrocortisone is the drug of choice. The dose requirement is determined individually. The daily dose is subdivided into three single doses (morning dose about 50 % of the daily dose). In CAH-SW, the mineralocorticoid 9 fludrocortisone is administered in an age-dependent absolute dose of 20–200 µg/day. After completion of growth, adolescents and young adults can be switched to other glucocorticoids. Attention must be paid to the different equivalence doses. If the child with non-classic CAH is symptomatic, then a low-dose glucocorticoid therapy should be given. Prenatal therapy of CAH with dexamethasone to prevent virilization of female CAH fetuses is still an experimental therapy.

 
  • Literatur

  • 1 Krone N, Arlt W. Genetics of congenital adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab 2009; 23: 181-192.
  • 2 Krone N, Braun A, Roscher AA. et al. Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J Clin Endocrinol Metab 2000; 85: 1059-1065.
  • 3 Trakakis E, Loghis C, Kassanos D. Congenital adrenal hyperplasia because of 21-hydroxylase deficiency. A genetic disorder of interest to obstetricians and gynecologists. Obstet Gynecol Surv 2009; 64: 177-189.
  • 4 Merke DP, Bornstein SR. Congenital adrenal hyperplasia. Lancet 2005; 365: 2125-2136.
  • 5 Speiser PW, White PC. Congenital adrenal hyperplasia. N Engl J Med 2003; 349: 776-788.
  • 6 Hindmarsh PC. Endocrine Society Congenital Adrenal Hyperplasia Guidelines: great content but how to deliver?. Clin Endocrinol (Oxf) 2012; 76: 465-466.
  • 7 Consensus statement on 21-hydroxylase deficiency from the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. J Clin Endocrinol Metab 2002; 87: 4048-4053.
  • 8 Kovacs J, Votava F, Heinze G. et al. Lessons from 30 years of clinical diagnosis and treatment of congenital adrenal hyperplasia in five middle European countries. J Clin Endocrinol Metab 2001; 86: 2958-2964.
  • 9 Weise M, Mehlinger SL, Drinkard B. et al. Patients with classic congenital adrenal hyperplasia have decreased epinephrine reserve and defective glucose elevation in response to high-intensity exercise. J Clin Endocrinol Metab 2004; 89: 591-597.
  • 10 Witchel SF. Nonclassic congenital adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes 2012; 19: 151-158.
  • 11 Bidet M, Bellanne-Chantelot C, Galand-Portier MB. et al. Fertility in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab 2010; 95: 1182-1190.
  • 12 New MI. Extensive clinical experience: nonclassical 21-hydroxylase deficiency. J Clin Endocrinol Metab 2006; 91: 4205-4214.
  • 13 Sahakitrungruang T, Soccio RE, Lang-Muritano M. et al. Clinical, genetic, and functional characterization of four patients carrying partial loss-of-function mutations in the steroidogenic acute regulatory protein (StAR). J Clin Endocrinol Metab 2010; 95: 3352-3359.
  • 14 Miller WL. StAR search – what we know about how the steroidogenic acute regulatory protein mediates mitochondrial cholesterol import. Mol Endocrinol 2007; 21: 589-601.
  • 15 Tee MK, Abramsohn M, Loewenthal N. et al. Varied clinical presentations of seven patients with mutations in CYP11A1 encoding the cholesterol side-chain cleavage enzyme, P450scc. J Clin Endocrinol Metab 2013; 98: 713-720.
  • 16 Miller WL. P450 oxidoreductase deficiency: a disorder of steroidogenesis with multiple clinical manifestations. Sci Signal 2012; 5: pt11.
  • 17 Krone N, Reisch N, Idkowiak J. et al. Genotypephenotype analysis in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency. J Clin Endocrinol Metab 2012; 97: E257-267.
  • 18 White PC. Steroid 11 beta-hydroxylase deficiency and related disorders. Endocrinol Metab Clin North Am 2001; 30: 61-79 vi.
  • 19 Krone N, Grischuk Y, Muller M. et al. Analyzing the functional and structural consequences of two point mutations (P94L and A368D) in the CYP11B1 gene causing congenital adrenal hyperplasia resulting from 11-hydroxylase deficiency. J Clin Endocrinol Metab 2006; 91: 2682-2688.
  • 20 Pang S. Congenital adrenal hyperplasia owing to 3 beta-hydroxysteroid dehydrogenase deficiency. Endocrinol Metab Clin North Am 2001; 30: 81-99 vi-vii.
  • 21 Azziz R, Bradley Jr EL, Potter HD, Boots LR. 3 beta-hydroxysteroid dehydrogenase deficiency in hyperandrogenism. Am J Obstet Gynecol 1993; 168 (03) (Suppl. 01) 889-895.
  • 22 Miller WL. The syndrome of 17,20 lyase deficiency. J Clin Endocrinol Metab 2012; 97: 59-67.
  • 23 Oh YK, Ryoo U, Kim D. et al. 17alpha-hydroxlyase/17, 20-lyase deficiency in three siblings with primary amenorrhea and absence of secondary sexual development. J Pediatr Adolesc Gynecol 2012; 25: e103-105.
  • 24 Shackleton C. Clinical steroid mass spectrometry: a 45-year history culminating in HPLC-MS/MS becoming an essential tool for patient diagnosis. J Steroid Biochem Mol Biol 2010; 121: 481-490.
  • 25 Concolino P, Mello E, Zuppi C. et al. Molecular diagnosis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency: an update of new CYP21A2 mutations. Clin Chem Lab Med 2010; 48: 1057-1062.
  • 26 Lin-Su K, Nimkarn S, New MI. Congenital adrenal hyperplasia in adolescents: diagnosis and management. Ann N Y Acad Sci 2008; 1135: 95-98.
  • 27 Bachelot A, Plu-Bureau G, Thibaud E. et al. Long-term outcome of patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Horm Res 2007; 67: 268-276.
  • 28 Claahsen-van der Grinten HL, Otten BJ, Stikkelbroeck MM. et al. Testicular adrenal rest tumours in congenital adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab 2009; 23: 209-220.
  • 29 Otten BJ, Stikkelbroeck MM, Claahsen-van der Grinten HL. et al. Puberty and fertility in congenital adrenal hyperplasia. Endocr Dev 2005; 8: 54-66.
  • 30 Nimkarn S, New MI. Prenatal diagnosis and treatment of congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Nat Clin Pract Endocrinol Metab 2007; 3: 405-413.
  • 31 Miller WL, Witchel SF. Prenatal treatment of congenital adrenal hyperplasia: risks outweigh benefits. Am J Obstet Gynecol. 2013; 208: 354-359.
  • 32 Dörr HG BG, Reisch N, Gembruch U. et al. Expert´s Opinion on the Prenatal Therapy of Congenital Adrenal Hyperplasia (CAH) due to 21-Hydroxylase-Deficiency – Guideline of DGKED in cooperation with DGGG (S1-Level, AWMF Registry No 174/013, July 2015). Geburtsh Frauenheilkunde 2015; 75: 1232-1238.
  • 33 van der Kamp HJ, Slijper FM. The quality of life in adult female patients with congenital adrenal hyperplasia: a comprehensive study of the impact of genital malformations and chronic disease on female patients life. Eur J Pediatr 1996; 155: 620-621.
  • 34 Braga LH, Pippi Salle JL. Congenital adrenal hyperplasia: a critical appraisal of the evolution of feminizing genitoplasty and the controversies surrounding gender reassignment. Eur J Pediatr Surg 2009; 19: 203-210.
  • 35 Dauber A, Kellogg M, Majzoub JA. Monitoring of therapy in congenital adrenal hyperplasia. Clin Chem 2010; 56: 1245-1251.
  • 36 Dörr HG. Adrenogenitales Syndrom. Diagnostik und Therapie. Gynäkologische Praxis 2014; 38: 253-268.