Thorac Cardiovasc Surg 2018; 66(06): 426-433
DOI: 10.1055/s-0037-1618575
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Roles of Transit-Time Flow Measurement for Coronary Artery Bypass Surgery

Yoshiyuki Takami
1   Department of Cardiovascular Surgery, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
,
Yasushi Takagi
1   Department of Cardiovascular Surgery, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
› Author Affiliations
Further Information

Publication History

26 October 2017

27 November 2017

Publication Date:
19 January 2018 (online)

Abstract

Transit-time flow measurement (TTFM) has been increasingly applied to detect graft failure during coronary artery bypass grafting (CABG), because TTFM is less invasive, more reproducible, and less time consuming. Many authors have attempted to validate TTFM and to gain the clear cutoff values and algorithm in TTFM to predict graft failure. The TTFM technology has also been shown to be a useful tool to investigate CABG graft flow characteristics and coronary circulation physiology. It is important to recognize the practical roles of TTFM in the cardiac operating room by review and summarize the literatures.

 
  • References

  • 1 Kleisli T, Cheng W, Jacobs MJ. , et al. In the current era, complete revascularization improves survival after coronary artery bypass surgery. J Thorac Cardiovasc Surg 2005; 129 (06) 1283-1291
  • 2 Balacumaraswami L, Abu-Omar Y, Choudhary B, Pigott D, Taggart DP. A comparison of transit-time flowmetry and intraoperative fluorescence imaging for assessing coronary artery bypass graft patency. J Thorac Cardiovasc Surg 2005; 130 (02) 315-320
  • 3 Reuthebuch O, Häussler A, Genoni M. , et al. Novadaq SPY: intraoperative quality assessment in off-pump coronary artery bypass grafting. Chest 2004; 125 (02) 418-424
  • 4 Louagie YA, Haxhe JP, Buche M, Schoevaerdts JC. Intraoperative electromagnetic flowmeter measurements in coronary artery bypass grafts. Ann Thorac Surg 1994; 57 (02) 357-364
  • 5 Canver CC, Dame NA. Ultrasonic assessment of internal thoracic artery graft flow in the revascularized heart. Ann Thorac Surg 1994; 58 (01) 135-138
  • 6 Laustsen J. Transit time flow measurement. In D'Ancona G, Karamanoukian H, Ricci M, Salerno TA, Bergsland J. , eds. Intraoperative Graft Patency Verification in Cardiac and Vascular Surgery. New York: Futura; 2001
  • 7 Franklin DL, Baker DW, Rushmer RF. Pulsed ultrasonic transit time flowmeter. IRE Transact Bio-Med Electronics 1962; 9 (01) 44-49
  • 8 Plass KG. A new ultrasonic flowmeter for intravascular application. IEEE Trans Biomed Eng 1964; 11 (04) 154-156
  • 9 Lundell A, Bergqvist D, Mattsson E, Nilsson B. Volume blood flow measurements with a transit time flowmeter: an in vivo and in vitro variability and validation study. Clin Physiol 1993; 13 (05) 547-557
  • 10 Hartman JC, Olszanski DA, Hullinger TG, Brunden MN. In vivo validation of a transit-time ultrasonic volume flow meter. J Pharmacol Toxicol Methods 1994; 31 (03) 153-160
  • 11 Takami Y, Ina H. Relation of intraoperative flow measurement with postoperative quantitative angiographic assessment of coronary artery bypass grafting. Ann Thorac Surg 2001; 72 (04) 1270-1274
  • 12 Ibrahim K, Vitale N, Kirkeby-Garstad I, Samstad S, Haaverstad R. Narrowing effect of off-pump CABG on the LIMA-LAD anastomosis: epicardial ultrasound assessment. Scand Cardiovasc J 2008; 42 (02) 105-109
  • 13 Honda K, Okamura Y, Nishimura Y. , et al. Graft flow assessment using a transit time flow meter in fractional flow reserve-guided coronary artery bypass surgery. J Thorac Cardiovasc Surg 2015; 149 (06) 1622-1628
  • 14 Walpoth BH, Bosshard A, Genyk I. , et al. Transit-time flow measurement for detection of early graft failure during myocardial revascularization. Ann Thorac Surg 1998; 66 (03) 1097-1100
  • 15 Handa T, Orihashi K, Nishimori H. , et al. Maximal blood flow acceleration analysis in the early diastolic phase for in situ internal thoracic artery bypass grafts: a new transit-time flow measurement predictor of graft failure following coronary artery bypass grafting. Interact Cardiovasc Thorac Surg 2015; 20 (04) 449-457
  • 16 Singh SK, Desai ND, Chikazawa G. , et al. The Graft Imaging to Improve Patency (GRIIP) clinical trial results. J Thorac Cardiovasc Surg 2010; 139 (02) 294-301 , 301.e1
  • 17 Kolh P, Wijns W, Danchin N. , et al; Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS); European Association for Percutaneous Cardiovascular Interventions (EAPCI). Guidelines on myocardial revascularization. Eur J Cardiothorac Surg 2010; 38 (Suppl): S1-S52
  • 18 Gregg DE, Khouri EM, Rayford CR. Systemic and coronary energetics in the resting unanesthetized dog. Circ Res 1965; 16: 102-113
  • 19 Lowensohn HS, Khouri EM, Gregg DE, Pyle RL, Patterson RE. Phasic right coronary artery blood flow in conscious dogs with normal and elevated right ventricular pressures. Circ Res 1976; 39 (06) 760-766
  • 20 Tokuda Y, Song MH, Ueda Y, Usui A, Akita T. Predicting early coronary artery bypass graft failure by intraoperative transit time flow measurement. Ann Thorac Surg 2007; 84 (06) 1928-1933
  • 21 Lehnert P, Møller CH, Damgaard S, Gerds TA, Steinbrüchel DA. Transit-time flow measurement as a predictor of coronary bypass graft failure at one year angiographic follow-up. J Card Surg 2015; 30 (01) 47-52
  • 22 Shin H, Yozu R, Mitsumaru A. , et al. Intraoperative assessment of coronary artery bypass graft: transit-time flowmetry versus angiography. Ann Thorac Surg 2001; 72 (05) 1562-1565
  • 23 Pagni S, Storey J, Ballen J. , et al. ITA versus SVG: a comparison of instantaneous pressure and flow dynamics during competitive flow. Eur J Cardiothorac Surg 1997; 11 (06) 1086-1092
  • 24 Une D, Deb S, Chikazawa G. , et al. Cut-off values for transit time flowmetry: are the revision criteria appropriate?. J Card Surg 2013; 28 (01) 3-7
  • 25 Uehara M, Muraki S, Takagi N. , et al. Evaluation of gastroepiploic arterial grafts to right coronary artery using transit-time flow measurement. Eur J Cardiothorac Surg 2015; 47 (03) 459-463
  • 26 Takami Y, Tajima K, Terazawa S, Okada N, Fujii K, Sakai Y. Transit-time flow characteristics of in situ right gastroepiploic arterial grafts in coronary artery bypass grafting. J Thorac Cardiovasc Surg 2009; 138 (03) 669-673
  • 27 Kolozsvari R, Galajda Z, Ungvari T. , et al. Various clinical scenarios leading to development of the string sign of the internal thoracic artery after coronary bypass surgery: the role of competitive flow, a case series. J Cardiothorac Surg 2012; 7: 12
  • 28 Tokuda Y, Song MH, Oshima H, Usui A, Ueda Y. Predicting midterm coronary artery bypass graft failure by intraoperative transit time flow measurement. Ann Thorac Surg 2008; 86 (02) 532-536
  • 29 Jokinen JJ, Werkkala K, Vainikka T, Peräkylä T, Simpanen J, Ihlberg L. Clinical value of intra-operative transit-time flow measurement for coronary artery bypass grafting: a prospective angiography-controlled study. Eur J Cardiothorac Surg 2011; 39 (06) 918-923
  • 30 Di Giammarco G, Pano M, Cirmeni S, Pelini P, Vitolla G, Di Mauro M. Predictive value of intraoperative transit-time flow measurement for short-term graft patency in coronary surgery. J Thorac Cardiovasc Surg 2006; 132 (03) 468-474
  • 31 Kim KB, Kang CH, Lim C. Prediction of graft flow impairment by intraoperative transit time flow measurement in off-pump coronary artery bypass using arterial grafts. Ann Thorac Surg 2005; 80 (02) 594-598
  • 32 Morota T, Duhaylongsod FG, Burfeind WR, Huang CT. Intraoperative evaluation of coronary anastomosis by transit-time ultrasonic flow measurement. Ann Thorac Surg 2002; 73 (05) 1446-1450
  • 33 Trachiotis GD. Value of diastolic flow with transit-time flow meters in coronary artery bypass surgery. Eur J Cardiothorac Surg 2011; 39 (03) 431 , author reply 431–432
  • 34 Leong DK, Ashok V, Nishkantha A, Shan YH, Sim EK. Transit-time flow measurement is essential in coronary artery bypass grafting. Ann Thorac Surg 2005; 79 (03) 854-857 , discussion 857–858
  • 35 Di Giammarco G, Rabozzi R. Can transit-time flow measurement improve graft patency and clinical outcome in patients undergoing coronary artery bypass grafting?. Interact Cardiovasc Thorac Surg 2010; 11 (05) 635-640
  • 36 Grines CL, Watkins MW, Helmer G. , et al. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation 2002; 105 (11) 1291-1297
  • 37 Takami Y, Ina H. A simple method to determine anastomotic quality of coronary artery bypass grafting in the operating room. Cardiovasc Surg 2001; 9 (05) 499-503
  • 38 Koenig SC, VanHimbergen DJ, Jaber SF, Ewert DL, Cerrito P, Spence PA. Spectral analysis of graft flow for anastomotic error detection in off-pump CABG. Eur J Cardiothorac Surg 1999; 16 (Suppl. 01) S83-S87
  • 39 Hatada A, Yoshimasu T, Kaneko M. , et al. Relation of waveform of transit-time flow measurement and graft patency in coronary artery bypass grafting. J Thorac Cardiovasc Surg 2007; 134 (03) 789-791
  • 40 Desai ND, Miwa S, Kodama D. , et al. A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect technical errors in coronary bypass grafts. J Thorac Cardiovasc Surg 2006; 132 (03) 585-594
  • 41 Walker PF, Daniel WT, Moss E. , et al. The accuracy of transit time flow measurement in predicting graft patency after coronary artery bypass grafting. Innovations (Phila) 2013; 8 (06) 416-419
  • 42 Kolh P, Windecker S, Alfonso F. , et al; European Society of Cardiology Committee for Practice Guidelines; EACTS Clinical Guidelines Committee; Task Force on Myocardial Revascularization of the European Society of Cardiology and the European Association for Cardio-Thoracic Surgery; European Association of Percutaneous Cardiovascular Interventions. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur J Cardiothorac Surg 2014; 46 (04) 517-592
  • 43 Klein P, Meijer R, Eikelaar JH, Gründeman PF, Borst C. Epicardial ultrasound in off-pump coronary artery bypass grafting: potential aid in intraoperative coronary diagnostics. Ann Thorac Surg 2002; 73 (03) 809-812
  • 44 Di Giammarco G, Canosa C, Foschi M. , et al. Intraoperative graft verification in coronary surgery: increased diagnostic accuracy adding high-resolution epicardial ultrasonography to transit-time flow measurement. Eur J Cardiothorac Surg 2014; 45 (03) e41-e45
  • 45 Tedoriya T, Kawasuji M, Sakakibara N, Takemura H, Watanabe Y, Hetzer R. Coronary bypass flow during use of intraaortic balloon pumping and left ventricular assist device. Ann Thorac Surg 1998; 66 (02) 477-481
  • 46 Onorati F, Santarpino G, Rubino A, Cristodoro L, Scalas C, Renzulli A. Intraoperative bypass graft flow in intra-aortic balloon pump-supported patients: differences in arterial and venous sequential conduits. J Thorac Cardiovasc Surg 2009; 138 (01) 54-61
  • 47 Rubino AS, Onorati F, Scalas C. , et al. Intra-aortic balloon pumping recruits graft flow reserve by lowering coronary resistances. Int J Cardiol 2012; 154 (03) 293-298
  • 48 Takami Y, Masumoto H. Effects of intra-aortic balloon pumping on graft flow in coronary surgery: an intraoperative transit-time flowmetric study. Ann Thorac Surg 2008; 86 (03) 823-827
  • 49 Nakajima H, Iguchi A, Tabata M. , et al. Preserved autoregulation of coronary flow after off-pump coronary artery bypass grafting: retrospective assessment of intraoperative transit time flowmetry with and without intra-aortic balloon counterpulsation. J Cardiothorac Surg 2016; 11 (01) 156
  • 50 Ryu HG, Bahk JH, Kim KB. Sympathetic stimulation increases the blood flow through the in situ right gastroepiploic artery graft after off-pump coronary artery bypass graft surgery. Eur J Cardiothorac Surg 2006; 29 (06) 948-951
  • 51 Zacharias A, Schwann TA, Riordan CJ, Durham SJ, Shah AS, Habib RH. Late results of conventional versus all-arterial revascularization based on internal thoracic and radial artery grafting. Ann Thorac Surg 2009; 87 (01) 19-26.e2
  • 52 Gwozdziewicz M, Nemec P, Simek M, Hajek R, Troubil M. Sequential bypass grafting on the beating heart: blood flow characteristics. Ann Thorac Surg 2006; 82 (02) 620-623
  • 53 Nordgaard H, Vitale N, Haaverstad R. Transit-time blood flow measurements in sequential saphenous coronary artery bypass grafts. Ann Thorac Surg 2009; 87 (05) 1409-1415
  • 54 Gaudino M, Di Mauro M, Iacò AL, Canosa C, Vitolla G, Calafiore AM. Immediate flow reserve of Y thoracic artery grafts: an intraoperative flowmetric study. J Thorac Cardiovasc Surg 2003; 126 (04) 1076-1079
  • 55 Onorati F, Rubino AS, Cristodoro L. , et al. In vivo functional flowmetric behavior of the radial artery graft: is the composite Y-graft configuration advantageous over conventional aorta-coronary bypass?. J Thorac Cardiovasc Surg 2010; 140 (02) 292-297.e2
  • 56 Schmitz C, Ashraf O, Schiller W. , et al. Transit time flow measurement in on-pump and off-pump coronary artery surgery. J Thorac Cardiovasc Surg 2003; 126 (03) 645-650
  • 57 Hassanein W, Albert AA, Arnrich B. , et al. Intraoperative transit time flow measurement: off-pump versus on-pump coronary artery bypass. Ann Thorac Surg 2005; 80 (06) 2155-2161
  • 58 Balacumaraswami L, Abu-Omar Y, Selvanayagam J, Pigott D, Taggart DP. The effects of on-pump and off-pump coronary artery bypass grafting on intraoperative graft flow in arterial and venous conduits defined by a flow/pressure ratio. J Thorac Cardiovasc Surg 2008; 135 (03) 533-539
  • 59 Shin H, Hashizume K, Iino Y, Koizumi K, Matayoshi T, Yozu R. Effects of atrial fibrillation on coronary artery bypass graft flow. Eur J Cardiothorac Surg 2003; 23 (02) 175-178
  • 60 D'Ancona G, Hargrove M, Hinchion J. , et al. Coronary grafts flow and cardiac pacing modalities: how to improve perioperative myocardial perfusion. Eur J Cardiothorac Surg 2004; 26 (01) 85-88
  • 61 Verhoye JP, Abouliatim I, Drochon A. , et al. Collateral blood flow between left coronary artery bypass grafts and chronically occluded right coronary circulation in patients with triple vessel disease. Observations during complete revascularisation of beating hearts. Eur J Cardiothorac Surg 2007; 31 (01) 49-54
  • 62 Hassanein W, Albert A, Florath I. , et al. Concomitant aortic valve replacement and coronary bypass: the effect of valve type on the blood flow in bypass grafts. Eur J Cardiothorac Surg 2007; 31 (03) 391-396
  • 63 Miwa S, Nishina T, Ueyama K. , et al. Visualization of intramuscular left anterior descending coronary arteries during off-pump bypass surgery. Ann Thorac Surg 2004; 77 (01) 344-346
  • 64 Lotto AA, Owens WA. Intraoperative Doppler velocity measurements to locate patent ITA grafts at reoperation. Ann Thorac Surg 2006; 82 (03) 1108-1110
  • 65 Takami Y, Tajima K, Kato W. , et al. Clinical validation of coronary artery flow through an intracoronary shunt during off-pump coronary artery bypass grafting. J Thorac Cardiovasc Surg 2014; 147 (01) 259-263