Hamostaseologie 2000; 20(02): 117-123
DOI: 10.1055/s-0037-1619474
Original article
Schattauer GmbH

Gerinnungsstörungen bei Sepsis

Coagulation Disorders in Sepsis
D. Inthorn
1   Chirurgische Klinik und Poliklinik, Klinikum Großhadern, Ludwig-Maximilians-Universität München (Direktor: Prof. Dr. Dr. F.-W. Schildberg)
,
J. N. Hoffmann
1   Chirurgische Klinik und Poliklinik, Klinikum Großhadern, Ludwig-Maximilians-Universität München (Direktor: Prof. Dr. Dr. F.-W. Schildberg)
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Zusammenfassung

Klinische und experimentelle Untersuchungen belegen die wichtige Rolle von Endotoxin und von verschiedenen inflammatorischen Mediatoren, die über eine Aktivierung des extrinsischen Systems eine systemische Gerinnungsaktivierung vermitteln, welche der Entwicklung der Organdysfunktion vorausgeht. Das intrinsische System scheint diese Gerinnungsaktivierung über die Induktion des Schockzustands zu verstärken und so zur vermehrten intravasalen Ablagerung von Fibrin – und wichtiger noch – zur erhöhten Aktivierung des Gefäßendothels beizutragen. Die Aktivierung des Gefäßendothels verursacht eine Verstärkung der Leukozyten-/Endothelzell-Interaktion und damit letztendlich eine Verschlechterung der kapillaren Organperfusion mit der Entwicklung der Organdysfunktion. Die Therapie der Gerinnungsaktivierung bei Sepsis beinhaltet an erster Stelle die Fokussanierung durch chirurgische Therapie und Antibiotikatherapie. Adjuvant stehen verschiedene Strategien zur spezifischen Therapie der Gerinnungsstörung bei Sepsis zur Verfügung, die meist auf der Augmentierung des natürlichen inhibitorischen Potentials des Organismus beruhen. Hierbei ist insgesamt pleiotrop angreifenden Therapieansätzen (z. B. Antithrombin, Protein C) mit dokumentierter antiinflammatorischer bzw. die Mikrozirkulation verbessernder Wirkung der Vorzug gegenüber solchen Strategien zu geben, die nur punktuell angreifen (z. B. Hirudin). Obwohl dieses Therapiekonzept pathophysiologisch gut zu begründen ist und tierexperimentell abgesichert wurde, muß der positive Einfluß dieser adjuvanten Therapiemaßnahme auf die Letalität von Patienten mit Sepsis und septischem Schock in klinischen Studien erst noch weiter abgesichert werden.

Summary

Clinical and experimental studies showed the key role of endotoxin and consecutively released inflammatory mediators during sepsis. These mediators are known to activate coagulatory pathways mainly via stimulation of the extrinsic system of coagulation. Hereby the extrinsic system mediates systemic coagulatory activation and finally promotes the development of organ dysfunction. The intrinsic system of coagulation, however, is known to amplify coagulatory activation by the induction of vasodilation and shock, thereby generating increased intravascular deposition of fibrin with increased activation of the vascular endothelium. Endothelial activation increases leukocyte/endothelial cell interaction and finally decreases organ perfusion leading to the development of multiple organ dysfunction syndrome. Sepsis is to be treated primarily by the clearance of the septic focus (surgery, antibiotic therapy). Specific measures of adjunctive sepsis therapy include coagulation inhibitor substitution. This therapeutical strategy bases on the augmentation of the natural coagulatory inhibitor potential of the organism. Pleiotropically working substances with well-documented antiinflammatory effects (antithrombin, protein C) are to be preferred in comparison to substances that modulate the coagulation cascade only in one enzyme of the coagulation cascade (e.g. hirudin). Although the concept of coagulatory inhibitor therapy during sepsis seems reasonable in view of sepsis pathophysiology and experimental findings, this concept has to prove its beneficial effects during prospective clinical trials.

 
  • Literatur

  • 1 Bone RC. The pathogenesis of sepsis. Ann Intern Med 1991; 115: 457-69.
  • 2 Faist E, Hoffmann JN. Systemic inflammatory response syndrome (SIRS) und Sepsis. In: Praxis der Chirurgie. Lippert H. (ed). Stuttgart: Georg Thieme Verlag; 1998: 231-8.
  • 3 Lowry SF. Cytokine mediators of immunity and inflammation. Arch Surg 1993; 128: 1235-41.
  • 4 Lamy M, Deby-Dupont G. Is sepsis a mediator-inhibitor mismatch?. Intensive Care Med 1995; 21: S250-7.
  • 5 Thijs LG, de Boer JP, de Groot MCM, Hack CE. Coagulation disorders in septic shock. Intensive Care Med 1993; 19: S8-15.
  • 6 Tanaka T, Tsujinaka T, Kambayashi J, Higashiyama M, Sakon M, Mori M. Sepsis model with reproducible manifestations of multiple organ failure (MOF) and disseminated intravascular coagulation (DIC). Thromb Res 1989; 54: 53-61.
  • 7 Fourrier F, Chopin C, Goudemand J, Hendrycx S, Caron C, Rime A, Marey A, Lestavel P. Septic shock, multiple organ failure, and disseminated intravascular coagulation. Compared patterns of antithrombin III, protein C, and protein S deficiencies. Chest 1992; 101: 816-23.
  • 8 Parrillo JE. Pathogenetic mechanisms of septic shock. N Engl J Med 1993; 328: 1471-7.
  • 9 Bone RC. Modulators of coagulation. A critical appraisal of their role in sepsis. Arch Intern Med 1992; 152: 1381-9.
  • 10 Glusa E. Vascular effects of thrombin. Semin Thromb Hemost 1992; 18: 296-304.
  • 11 McCuskey R, Urbaschek R, Urbaschek B. The microcirculation during endotoxinemia. Cardiovascular Research 1996; 32: 752-63.
  • 12 Johnston B, Walter UM, Issekutz AC, Issekutz TB, Anderson DC, Kubes P. Differential roles of selectins and the alpha4-integrin in acute, subacute, and chronic leukocyte recruitment in vivo. J Immunol 1997; 159: 4514-23.
  • 13 Granger DN, Kubes P. The microcirculation and inflammation: modulation of leukocyteendothelial cell interaction. J Leukoc Biol 1994; 55: 662-75.
  • 14 Johnson K, Aarden L, Choi Y, De Groot E, Creasey A. The proinflammatory cytokine response to coagulation and endotoxin in whole blood. Blood 1996; 87: 5051-60.
  • 15 van der Poll T, Levi M, van Deventer SJ, ten Cate H, Haagmans BL, Biemond BJ, Buller HR, Hack CE, ten Cate JW. Differential effects of anti-tumor necrosis factor monoclonal antibodies on systemic inflammatory responses in experimental endotoxemia in chimpanzees. Blood 1994; 83: 446-51.
  • 16 Levi M, ten Cate H, van der Poll T, van Deventer SJ. Pathogenesis of disseminated intravascular coagulation in sepsis. JAMA 1993; 270: 975-9.
  • 17 Bone RC. Sepsis and coagulation: an important link. Chest 1992; 101: 594-6.
  • 18 Fiedler VB, Loof I, Sander E, Voehringer V, Galanos C, Fournel MA. Monoclonal antibody to tumor necrosis factor – alpha prevents lethal endotoxin sepsis in adult rhesus monkeys. J Lab Clin Med 1992; 120: 574-88.
  • 19 van der Poll T, Levi M, Hack CE, ten Cate H, van Deventer SJ, Eerenberg AJ, de Groot ER, Jansen J, Gallati H, Buller HR. Elimination of interleukin 6 attenuates coagulation activation in experimental endotoxemia in chimpanzees. J Exp Med 1994; 179: 1253-9.
  • 20 Boermeester MA, van Leeuwen PAM, Coyle SM, Wolbrink GJ, Hack CE, Lowry SF. Interleukin-1 blockade attenuates mediator release and dysregulation of the hemostatic mechanism during human sepsis. Arch Surg 1995; 130: 739-48.
  • 21 van Deventer SJ, Buller HR, ten Cate JW, Aarden LA, Hack CE, Sturk A. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 1990; 76: 2520-6.
  • 22 Goldfarb RD, Glock D, Johnson K, Creasey AA, Carr C, McCathy RJ, Matushek M, Akhter I, Trenholme G, Parrillo JE. Randomized, blinded, placebo-controlled trial of tissue factor pathway inhibitor in porcine septic shock. Shock 1998; 10 (04) 258-64.
  • 23 Creasey AA, Chang ACK, Feigen L, Wun TC, Taylor FB, Hinshaw LB. Tissue factor pathway inhibitor reduces mortality from E. coli septic shock. J Clin Invest 1993; 91: 2850-6.
  • 24 Lo SK, Lai L, Cooper JA, Malik AB. Thrombin-induced generation of neutrophil activating factors in blood. Am J Pathol 1988; 130: 22-32.
  • 25 Roman J, Velasco F, Fernandez F, Fernandez M, Villalba R, Rubio V, Vicente A, Torres A. Coagulation, fibrinolytic and kallikrein systems in neonates with uncomplicated sepsis and septic shock. Haemostasis 1993; 23: 142-8.
  • 26 Pixley RA, DeLa Cadena RA, Page JD. The contact system contributes to hypotension but not to disseminated intravascular coagulation in lethal bacteremia. J Clin Invest 1993; 91: 61-8.
  • 27 Vervloet MG, Thijs LG, Hack CE. Derangements of coagulation and fibrinolysis in critically ill patients with sepsis and septic shock. Semin Thromb Hemost 1998; 24 (01) 33-44.
  • 28 Leithäuser B, Matthias FR, Nicolai U, Voss R. Hemostatic abnormalities and the severity of illness in patients at the onset of clinically defined sepsis. Intensive Care Med 1996; 22: 631-6.
  • 29 Bick RL. Disseminated intravascular coagulation: pathophysiological mechanisms and manifestations. Semin Thromb Hemost 1996; 24 (01) 3-18.
  • 30 Fourrier F, Jourdain M, Tournois A, Caron C, Goudemand J, Chopin C. Coagulation inhibitor substitution during sepsis. Intensive Care Med 1995; 21: 264-8.
  • 31 Mammen EF. Perspectives for the future. Intensive Care Med 1993; 19 (Suppl. 01) S29-34.
  • 32 Sala N, Fontcuberta J, Rutlland ML. New biological concepts on coagulation inhibitors. Intensive Care Med 1996; 19: S3-7.
  • 33 Wilson RF, Farag A, Mammen EF, Fujii Y. Sepsis and antithrombin III, prekallikrein, and fibronectin levels in surgical patients. Am Surg 1989; 55: 450-6.
  • 34 Hesselvik JF, Blomback M, Brodin B, Maller R. Coagulation, fibrinolysis, and kallikrein systems in sepsis: relation to outcome. Crit Care Med 1989; 17: 724-33.
  • 35 Schuster HP. AT III in septicemia with DIC. Intensive Care Med 1993; 19 (Suppl. 01) S16-S18.
  • 36 Wilson RF, Mammen EF, Tyburski JG, Warsow KM, Kubinec SM. Antithrombin levels related to infections and outcome. J Trauma 1996; 40: 384-7.
  • 37 Massignon D, Lepape A, Bienvenu J, Barbier Y, Boileau C, Coeur P. Coagulation/fibrinolysis balance in septic shock related to cytokines and clinical state. Haemostasis 1994; 24: 36-48.
  • 38 Dickneite G. Antithrombin III in animal models of sepsis and organ failure. Semin Thromb Haemost 1998; 24 (01) 61-9.
  • 39 Dickneite G, Paques EP. Reduction of mortality with antithrombin III in septicemic rats: a study of Klebsiella pneumoniae induced sepsis. Thromb Haemost 1993; 69: 98-102.
  • 40 Blauhut B, Kramar H, Vinazzer H, Bergmann H. Substitution of antithrombin III in shock and DIC: a randomized study. Thromb Res 1985; 39: 81-9.
  • 41 Fourrier F, Chopin C, Huart JJ, Runge I, Caron C, Goudemand J. Double-blind, plabo-controlled trial of antithrombin III concentrates in septic shock with disseminated intravascular coagulation. Chest 1993; 104: 882-8.
  • 42 Inthorn D, Hoffmann JN, Hartl WH, Mühlbayer D, Jochum M. Antithrombin III supplementation in severe sepsis: beneficial effects on organ dysfunction. Shock 1997; 8: 328-34.
  • 43 Inthorn D, Hoffmann JN, Hartl WH, Mühlbayer D, Jochum M. Effect of antithrombin III supplementation on inflammatory immune response in patients with severe sepsis. Shock 1998; 10: 90-6.
  • 44 Okano K, Kokudo Y, Okajima K, Hossain MA, Ishimura K, Yachida S, Tsubouchi T, Wakabayashi H, Maeba T, Maeta H. Protective effects of antithrombin III supplementation on warm ischemia and reperfusion injury in rat liver. World J Surg 1996; 20: 1069-5.
  • 45 Ostrovsky L, Woodman R, Payne D, Teoh D, Kubes P. Antithrombin III prevents and rapidly reverses leukocyte recruitment in ischemia/reperfusion. Circulation 1997; 96: 2302-10.
  • 46 Hoffmann JN, Vollmar B, Inthorn D, Schildberg FW, Menger MD. Antithrombin prevents endotoxin-induced leukocyte/endothelial cell interaction and microvascular perfusion failure involvement of the cyclooxygenase pathway. Am J Physiol. 2000 in press.
  • 47 Uchiba M, Okajima K, Murakami K, Okabe H, Takatsuki K. Attenuation of endotoxin-induced pulmonary vascular injury by antithrombin III. Am J Physiol 1996; 270: L921-30.
  • 48 Okajima K, Uchiba M. The antiinflammatory properties of antithrombin III: new therapeutic implications. Semin Thromb Hemost 1998; 24 (01) 27-32.
  • 49 Hugli TE. Biochemistry and biology of anaphylatoxins. Complement 1986; 13: 111.
  • 50 Huey R, Hugli TE. Characterization of a C5a receptor on human polymorphonuclear leukocytes. J Immunol 1985; 135: 2063-8.
  • 51 Schmidt W, Stenzel K, Gebhard MM, Martin E, Schmidt H. C1-esterase inhibitor and its effects on endotoxin-induced leukocyte adherence and plasma extravasation in postcapillary venules. Surgery 1999; 125: 280-7.
  • 52 Pixley RA, Schapira M, Colman RW. The regulation of human factor XIIa by plasma protease inhibitors. J Biol Chem 1985; 260: 1723-9.
  • 53 Yamaguchi H, Weidenbach H, Luehrs H, Lerch MW, Dickneite G, Adler G. Combined treatment with C1 esterase inhibitor and antithrombin III improves survival in severe acute experimental pancreatitis. Gut 1997; 40: 531-5.
  • 54 Vangerow B. Clinical improvement after administration of C1-esterase inhibitor in two patients with SIRS and capillary leakage syndrome. Intensive Care Med 1996; 22: 367 (Abstr.).
  • 55 Furie B, Furie BC. Molecular and cellular biology of blood coagulation. N Engl J Med 1992; 326: 800-6.
  • 56 Lorente JA, Garcia Frade LJ, Landin L, de Pablo R, Torrado C, Renes E, Garcia Avello A. Time course of hemostatic abnormalities in sepsis and its relation to outcome. Chest 1993; 103: 1536-42.
  • 57 Brandtzaeg P, Sandset PM, Joo GB, Ovstebo R, Abildgaard U, Kierulf U. The quantitative association of plasma endotoxin, antithrombin, protein C, extrinsic pathway inhibitor and fibrinopeptide A in systemic meningococcal disease. Thromb Res 1989; 55: 459-70.
  • 58 Gando S, Kameue T, Nanzaki S, Nakanishi Y. Disseminated intravascular coagulation is a frequent complication of systemic inflammatory response syndrome. Thromb Haemost 1996; 75: 224-8.
  • 59 Krishnamurti C, Young GD, Barr CF, Colleton CA, Alving BM. Enhancement of tissue plasmin activator-induced fibrinolysis by activated protein C in endotoxin-treated rabbits. J Lab Clin Med 1991; 118: 523-30.
  • 60 Taylor FBJ, Chang A, Esmon CT, D’Angelo A, Vigano DA, Blick KE. Protein C prevents the coagulopathic and lethal effects of Escherichia coli infusion in the baboon. J Clin Invest 1987; 79: 918-25.
  • 61 Hack CE. Inhibitor substitution in sepsis. Intensive Care Med 1993; 19 (Suppl. 01) S1-2.
  • 62 Park CT, Creasey AA, Wright SD. Tissue factor pathway inhibitor blocks cellular effects of endotoxin by binding to endotoxin and interfering with transfer to CD 14. Blood 1997; 89 (12) 4268-74.
  • 63 Walenga JM, Pifarre R, Hoppensteadt DA, Fareed J. Development of recombinant hirudin as a therapeutic anticoagulant and antithrombotic agent: some objective considerations. Semin Thromb Hemost 1989; 15: 316-33.
  • 64 Nowak G, Markwardt F. Hirudin in disseminated intravascular coagulation. Haemostasis 1991; 21: S142-8.
  • 65 Dickneite G, Czech J. Combination of antibiotic treatment with the thrombin inhibitor recombinant hirudin for the therapy of experimental Klebsiella pneumoniae sepsis. Thromb Haemost 1994; 71: 768-72.
  • 66 Hoffmann H, Siebeck M, Spannagel M, Weis M, Geiger R, Jochum M, Fritz H. Effect of recombinant hirudin, a specific inhibitor of thrombin on endotoxin-induced intravascular coagulation and acute lung injury in pigs. Am Rev Resp Dis 1990; 142: 782-8.
  • 67 Dickneite G, Czech J, Keuper H. Formation of fibrin monomers in experimental disseminated intravascular coagulation and its inhibition by recombinant hirudin. Circ Shock 1994; 42: 183-9.
  • 68 Hermida J, Montes R, Paramo JA, Rocha E. Endotoxin-induced disseminated intravascular coagulation in rabbits: Effect of recombinant hirudin on hemostatic parameters, fibrin deposits, and mortality. J Lab Clin Med 1998; 131: 77-83.
  • 69 Hoffmann JN, Vollmar B, Inthorn D, Schildberg FW, Menger MD. The thrombin antagonist hirudin fails to improve endotoxin-induced leukocyte/endothelial cell interaction and micro-vascular perfusion failure. Shock. 2000 in press.