Hamostaseologie 2005; 25(03): 293-300
DOI: 10.1055/s-0037-1619663
Original Article
Schattauer GmbH

Ecarin Chromogenic Assay

Innovativer Test zur quantitativen Bestimmung direkter Thrombininhibitoren im PlasmaEcarin chromogenic assayAn innovative test for quantitative determination of direct thrombin inhibitors in plasma
U. Lange
1   HaemoSys GmbH, Jena
,
A. Olschewski
1   HaemoSys GmbH, Jena
,
G. Nowak
2   Arbeitsgruppe Pharmakologische Hämostaseologie (Leiter: Prof. Dr. G. Nowak), Medizinische Fakultät, Friedrich-Schiller-Universität Jena
,
E. Bucha
1   HaemoSys GmbH, Jena
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Zusammenfassung

Der ECA (ecarin chromogenic assay) wurde zur quantitativen Bestimmung von direkten Thrombininhibitoren entwickelt. Er ist eine Weiterentwicklung der ECT (ecarin clotting time) und basiert wie diese auf der Prothrombinaktivierung durch Ecarin, einem Schlangengiftenzym aus Echis carinatus. Durch die entstehenden Aktivierungsprodukte Meizothrombin und Meizothrombin-Des-Fragment 1 wird im ECA ein chromogenes Substrat gespalten, während im Gerinnungsassay ECT plasmatisches Fibrinogen zu Fibrin umgesetzt wird.

Die Aktivität von Meizothrombin und Meizothrombin-Des-Fragment 1 wird konzentrationsabhängig durch direkte Thrombininhibitoren gehemmt. Der ECA kann als ECA-H zur quantitativen Hirudinbestimmung und als ECA-T zur Bestimmung von synthetischen Thrombinhemmstoffen eingesetzt werden. Am Beispiel von Hirudin, Argatroban und Melagatran erwies sich der ECA als äußerst präzise und sensitive Methode, die die Vorteile der ECT mit denen chromogener Tests verbindet. Im Vergleich zu aPTT und ECT weist der ECA sehr geringe interindividuelle Schwankungen auf. Er wird weder von der Prothrombin-noch von der Fibrinogenkonzentration im Plasma beeinflusst.

Summary

The ecarin chromogenic assay (ECA) was developed for quantitative determination of direct thrombin inhibitors. As a further development of the ecarin clotting time (ECT), the ECA is based on the same principle, the activation of prothrombin by ecarin a snake venom from Echis carinatus. In the ECA the prothrombin activation products meizothrombin and meizothrombin-desF1 cleave a chromogenic substrate, whereas in the clotting assay ECT plasma fibrinogen is converted to fibrin.

The activity of meizothrombin/meizothrombin-desF1 is inhibited in a concentration-dependent fashion by direct thrombin inhibitors. The ECA can be used as ECA-H for quantitative determination of hirudin and as ECA-T for determination of synthetic thrombin inhibitors. As shown for hirudin, argatroban and melagatran, the ECA turned out as a very precise and sensitive method, which combines the advantages of ECT with those of chromogenic assays. In ECA very low interindividual variations were found compared to aPTT and even ECT. The ECA is independent of the variations of the coagulation variables prothrombin and fibrinogen.

 
  • Literatur

  • 1 Ahmad S, Iqbal O, Ahsan A. et al. Clinical laboratory monitoring of a synthetic antithrombin agent, argatroban, using high performance liquid chromatography and functional methods. Int Angiol 1999; 18: 198-205.
  • 2 Berry CN, Lunven C, Girardot C. et al. Ecarin clotting time: a predictive coagulation assay for the antithrombotic activity of argatroban in the rat. Thromb Haemost 1998; 79: 228-33.
  • 3 Calatzis A, Spannagl M, Gempeler-Messina P. et al. The prothrombinase-induced clotting test: A new technique for the monitoring of anticoagulants. Haemostasis 2000; 30 (Suppl. 02) 172-4.
  • 4 Despotis GJ, Hogue CW, Saleem R. et al. The relationship between hirudin and activated clotting time: Implications for patients with heparin-induced thrombocytopenia undergoing cardiac surgery. Anesth Analg 2001; 93: 28-32.
  • 5 Fenyvesi T, Jörg I, Harenberg J. Effect of phenprocoumon on monitoring of lepirudin, argatroban, melagatran and unfractionated heparin with the PiCT method. Pathophysiol Haemost Thromb 2002; 32: 174-9.
  • 6 Gosselin RC, King JH, Janatpour KA. et al. Comparing direct thrombin inhibitors using aPTT, ecarin clotting times, and thrombin inhibitor management testing. Ann Pharmacother 2004; 38: 1383-8.
  • 7 Griessbach U, Stürzebecher J, Markwardt F. Assay of hirudin in plasma using a chromogenic thrombin substrate. Thromb Res 1985; 37: 347-50.
  • 8 Groetsch H, Damm D, Ben Youssef R. et al. Comparison of two different methods for the determination of rDNA-hirudin in plasma samples: HPLC vs a chromogenic thrombin substrate. Thromb Res 1991; 64: 273-7.
  • 9 Gustafsson D, Elg M. The pharmacodynamics and pharmacokinetics of the oral direct thrombin inhibitor ximelagatran and ist active metabolite melagatran: a mini-review. Thromb Res 2003; 109: S9-15.
  • 10 Hafner G, Fickenscher K, Friesen HJ. et al. Evaluation of an automated chromogenic substrate assay for the rapid determination of hirudin in plasma. Thromb Res 1995; 77: 165-73.
  • 11 Hafner G, Roser M, Nauck M. Methods for the monitoring of direct thrombin inhibitors. Semin Thromb Haemost 2002; 28: 425-30.
  • 12 Harder S, Graff J, Klinkhardt U. et al. Transition from argatroban to oral anticoagulation with phenprocoumon or acenocoumarol: effects on prothrombin time, activated partial thromboplastin time, and ecarin clotting time. Thromb Haemost 2004; 91: 1137-45.
  • 13 Iyer L, Adam M, Amiral J. et al. Development and validation of two enzyme-linked immunosorbent assay (ELISA) methods for recombinant hirudin. Semin Thromb Hemost 1995; 21: 184-92.
  • 14 Kathiresan S, Shiomura J, Jang I-K. Argatroban. J Thromb Thrombolysis 2002; 13: 41-7.
  • 15 Lange U, Nowak G, Bucha E. Ecarin chromogenic assay – a new method for quantitative determination of direct thrombin inhibitors like hirudin. Pathophysiol Haemost Thromb 2003; /04; 33: 184-91.
  • 16 Lange U, Wiesenburg A, Olschewski A. et al. Quantitative determination of direct thrombin inhibitors using the ecarin chromogenic assay (ECA) – both POCT and automated method. Ann Hematol 2003; 82 (Suppl. 01) S53.
  • 17 Lankes W, Fleischer K, Gulba DC. Direct thrombin inhibitors. Herz 2001; 26: S46-52.
  • 18 Larsson M, Logren U, Ahnoff M. et al. Determination of melagatran, a novel, direct thrombin inhibitor, in human plasma and urine by liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 766: 47-55.
  • 19 Lindhoff-Last E, Piechottka GP, Rabe F. et al. Hirudin determination in plasma can be strongly influenced by the prothrombin level. Thromb Res 2000; 100: 55-60.
  • 20 Markwardt F. Hirudin as alternative anticoagulant – a historical review. Semin Thromb Hemost 2002; 28: 405-13.
  • 21 Mattsson C, Menschiek-Lundin A, Wahlander K. et al. Effect of melagatran on prothrombin time assays depends on the sensitivity of the thromboplastin and the final dilution of the plasma sample. Thromb Haemost 2001; 86: 611-5.
  • 22 Mazoyer E, Drouet L, Delahousse B. et al. Activated partial thromboplastin time is more sensitive than ecarin clotting time for monitoring low doses of desirudin. Thromb Res 2002; 106: 271-2.
  • 23 Nowak G, Bucha E. A new method for the therapeutic monitoring of hirudin. Thromb Haemost 1993; 69: 306-10.
  • 24 Nowak G, Bucha E. Quantitative determination of hirudin in blood and body fluids. Semin Thromb Hemost 1996; 22: 197-202.
  • 25 Nowak G. Monitoring of the action of antithrombin agents by ecarin clotting time. In: Pifarré R. (ed). New Anticoagulants for the Cardiovascular Patient. Philadelphia: Hanley & Belfus; 1997: 539-50.
  • 26 Nowak G. Clinical monitoring of hirudin and direct thrombin inhibitors. Semin Thromb Hemost 2001; 27: 537-41.
  • 27 Nowak G. The ecarin clotting time, a universal method to quantify direct thrombin inhibitors. Pathophysiol Haemost Thromb 2003; /04; 33: 173-83.
  • 28 Nurmohamed MT, Berckmans RJ, Morrien-Salomons WM. et al. Monitoring anticoagulant therapy by activated partial thromboplastin time: Hirudin assessment. An evaluation of native blood and plasma assays. Thromb Haemost 1994; 72: 685-92.
  • 29 Pivalizza EG. Monitoring of hirudin therapy with the thrombelastograph. J Clin Anesth 2002; 14: 456-8.
  • 30 Pötzsch B, Hund S, Madlener K. et al. Monitoring of recombinant hirudin-assessment of a plasmabased ecarin clotting time assay. Thromb Res 1997; 86: 373-83.
  • 31 Ratnoff OD, Menzie C. A new method for the determination of fibrinogen in small samples of plasma. J Lab Clin Med 1954; 37: 316-20.
  • 32 Reid 3rd TJ, Alving BM. A quantitative thrombin time for determining levels of hirudin and hirulog. Thromb Haemost 1993; 70: 608-16.
  • 33 Schoen P, Lindhout T. The in situ inhibition of prothrombinase-formed human alpha-thrombin and meizothrombin (des F1) by antithrombin III and heparin. J Biol Chem 1987; 262: 11268-74.
  • 34 Schussler JM, Lander SR, Wissinger LA. et al. Validation of the i-STAT handheld activated clotting time for use with bivalirudin. Am J Cardiol 2004; 93: 1318-9.
  • 35 Spannagl M, Bichler J, Birg A. et al. Development of a chromogenic substrate assay for the determination of hirudin in plasma. Blood Coagul Fibrinolysis 1991; 2: 121-7.
  • 36 Spinner S, Scheffauer F, Maschler R. et al. A hirudin catching ELISA for quantitating the anticoagulant in biological fluids. Thromb Res 1988; 51: 617-25.
  • 37 Stürzebecher J. Methods for determination of hirudin. Semin Thromb Hemost 1991; 17: 99-102.
  • 38 Swan SK, St Peter JV, Lambrecht LJ. Comparison of anticoagulant effects and safety of argatroban and heparin in healthy subjects. Pharmacotherapy 2000; 20: 756-70.
  • 39 Tripodi A, Chantarangkul V, Arbini AA. et al. Effects of hirudin on activated partial thromboplastin time determined with ten different reagents. Thromb Haemost 1993; 70: 286-8.
  • 40 Walenga JM. An overview of the direct thrombin inhibitor argatroban. Pathophysiol Haemost Thromb 2002; 32 (Suppl. 03) 9-14.