Phlebologie 2011; 40(01): 9-14
DOI: 10.1055/s-0037-1621698
Originalarbeiten
Schattauer GmbH

Die Wirkung der Kompressions-therapie auf die lokale Mikrozirkulation und Histomorphologie beim Ulcus cruris venosum

Impact of compression therapy on local microcirculation and histomorphology in venous leg ulcer
A. A. Altintas
1   Plastische, Hand- und Wiederherstellungschirurgie, Universität Essen, Essen
,
B. Gehl
1   Plastische, Hand- und Wiederherstellungschirurgie, Universität Essen, Essen
,
M. C. Aust
2   Klinik für Plastische, Hand- und Wiederherstellungschirurgie, Medizinische Hochschule Hannover
,
M. Meyer-Marcotty
2   Klinik für Plastische, Hand- und Wiederherstellungschirurgie, Medizinische Hochschule Hannover
,
M. A. Altintas
2   Klinik für Plastische, Hand- und Wiederherstellungschirurgie, Medizinische Hochschule Hannover
› Author Affiliations
Further Information

Publication History

Received:29 November 2011

Accepted:13 January 2011

Publication Date:
30 December 2017 (online)

Zusammenfassung

Hintergrund: Die Wirkung der Kompressionstherapie auf die lokale Mikrozirkulation und Histomorphologie ist bisher nicht ausreichend belegt. Die konfokale Laser-Scanning-Mikroskopie (KLSM) ermöglicht eine in-vivo-Untersuchung der menschlichen Haut auf zellulärer Ebene.

Methode: Neunzehn Patienten mit Ulcus cruris venosum wurden folgenden Therapien zugeführt. Gruppe A: medizinische Kompressionstherapie, inaktive Wundauflage; Gruppe B: inaktive Wundauflage. Vor und 4 Wochen nach Therapiebeginn wurden folgende Parameter mittels KLSM evaluiert: zellulärer Blutfluss, Epidermisdicke, epidermale Zellgrößen, Quantität von Entzündungszellen.

Ergebnisse: In Gruppe A stieg nach vierwöchiger Kompressionstherapie der zelluläre Blutfluss signifikant an, in Gruppe B nur insignifikant. Die Epidermisdicke nahm in Gruppe A mehr ab als in Gruppe B. Die epidermalen Zellen veränderten sich in beiden Gruppen nur insignifikant. Die Quantität der Entzündungszellen nahm in Gruppe A von massiv auf vereinzelt und in Gruppe B von massiv auf vermehrt ab.

Conclusio: Mit der KLSM konnte die positive Wirkung der medizinischen Kompressionstherapie auf die lokale Mikrozirkulation und His-tomorphologie beim Ulcus cruris venosum nachgewiesen werden.

Summary

Background: The impact of compression therapy in the most severe outcome of chronic venous insufficiency on microcirculation and his-tomorphology is widely unknown. In vivo Confocal Laser-Scanning-Microscopy (CLSM) enables insight in human skin on cellular and sub-cellular levels. In this study, the impact of compression therapy on local micromorphology in venous leg ulcer was evaluated using CLSM.

Methods: Nineteen patients with chronic venous leg ulcer (ulcer size: 1 to 10 cm) were divided in two groups. Group A was treated with compression therapy and inactive wound dressing (4 m, 8 f, aged 68.4 years, BMI 26.9); Group B was treated solely with inactive wound dressing (2 m, 5 f, aged 64.2 years, BMI 28.1). Prior to start (control) and four weeks subsequently specific treatment in addition to ulcer size the following parameters were evalu- ated using CLSM (Vivascope1500®, Lucid Inc, Rochester, New York; USA): individual blood cell flow (quantity of transcapillary blood cells flow), epidermal thickness, epidermal cell size, and quantity of inflammatory cells.

Results: In Group A control ulcer size was 32.4 cm2 (37.2 cm2; Group B) and decreased significantly to 8.2 cm2 (28.1 cm2; Group B, P<0.05) following four week therapy. In Group A blood cell flow was 40.04 ± 4.62/min (control) and increased up to 61.40 ± 5.16/min (P<0.05) subsequently compression therapy. In Group B control blood cell flow was 38.92 ± 6.80/min and increased slightly up to 42.80 ± 5.96/min (P>0.05). The epidermal thickness was found to be 69.10 ± 5.41 μm (control) and decreased significantly to 49.21 ± 4.60 μm in Group A. In Group B epidermal thickness was 71.48 ± 6.94 μm in controls and decreased slightly to 60.11 ± 5.16 μm. In both groups the epidermal cell size differ insignificantly (Group A 862.27 ± 42.96 μm2 vs. 839.25 ± 61.13 μm2; Group B 870.04 ± 52.43 μm2 vs. 852.73 ± 4.80 μm2, P>0.05). The quantity of inflammatory cells decreased following specific therapy in both groups from massive to less in Group A, and in Group B from massive to more.

Conclusion: For the first time, CLSM demonstrated the positive impact of compression therapy in chronic venous leg ulcer on local microcirculation and histomorphology in vivo on cellular level.

 
  • Literatur

  • 1 Partsch H. Zur Pathogenese der venösen Ulcus cruris. Der Hautarzt 1985; 36: 196-202.
  • 2 Browse NL, Burnand KG. The cause of venous ulceration. Lancet 1982; 2 08292 243-245.
  • 3 Vanscheidt W, Laaff H, Wokalek H, Niedner R, Schopf E. Pericapillary fibrin cuff: a histological sign of venous leg ulceration. J Cutan Pathol 1990; 17 (05) 266-268.
  • 4 Herrick SE, Sloan P, McGurk M, Freak L, McCollum CN, Ferguson MW. Sequential changes in histologic pattern and extracellular matrix deposition during the healing of chronic venous ulcers. Am J Pathol 1992; 141 (05) 1085-1095.
  • 5 Moffatt C, Kommala D, Dourdin N, Choe Y. Venous leg ulcers: patient concordance with compression therapy and its impact on healing and prevention of recurrence. Int Wound J 2009; 6 (05) 386-393.
  • 6 Jünger M, Wollina U, Kohnen R, Rabe E. Efficacy and tolerability of an ulcer compression stocking for therapy of chronic venous ulcer compared with a below-knee compression bandage: results from a prospective, randomized, multicentre trial. Curr Med Res Opin 2004; 20 (010) 1613-1623.
  • 7 McDaniel HB, Marston WA, Farber MA, Mendes RR, Owens LV, Young ML, Daniel PF, Keagy BA. Recurrence of chronic venous ulcers on the basis of clinical, etiologic, anatomic, and pathophysiologic criteria and air plethysmography. J Vasc Surg 2002; 35 (04) 723-728.
  • 8 Altintas AA, Altintas MA, Ipaktchi K, Guggenheim M, Theodorou P, Amini P, Spilker G. Assessment of microcirculatory influence on cellular morphology in human burn wound healing using reflectance mode-confocal microscopy. Wound Repair Regen 2009; 17 (04) 498-504.
  • 9 Altintas MA, Altintas AA, Guggenheim M, Aust MC, Niederbichler AD, Knobloch K, Vogt PM. Insight in microcirculation and histomorphology during burn shock treatment using in vivo confocal-laser-scanning microscopy. J Crit Care 2010; 25 (01) 173 e171-177.
  • 10 Altintas MA, Altintas AA, Guggenheim M, Gohritz A, Meyer-Marcotty M, Vogt PM. Reflectance confocal-laser-scanning microscopy in vivo assessments of cigarette-induced dynamic alterations of cutaneous microcirculation on histomorphological level. Microsc Res Tech 2009; 72 (04) 347-350.
  • 11 Altintas MA, Altintas AA, Guggenheim M, Knobloch K, Niederbichler AD, Vogt PM. Monitoring of microcirculation in free transferred musculocutaneous latissimus dorsi flaps by confocal laser scanning microscopy – a promising non-invasive methodical approach. J Plast Reconstr Aesthet Surg 2010; 63 (01) 111-117.
  • 12 Hegyi J, Hegyi V, Messer G, Arenberger P, Ruzicka T, Berking C. Confocal laser-scanning capillaroscopy: a novel approach to the analysis of skin capillaries in vivo. Skin Res Technol 2009; 15 (04) 476-481.
  • 13 Aghassi D, Anderson RR, Gonzalez S. Time-sequence histologic imaging of laser-treated cherry angiomas with in vivo confocal microscopy. J Am Acad Dermatol 2000; 43 01 Pt 1 37-41.
  • 14 Rajadhyaksha M, Gonzalez S, Zavislan JM, Anderson RR, Webb RH. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J Invest Dermatol 1999; 113 (03) 293-303.
  • 15 Nori S, Rius-Diaz F, Cuevas J, Goldgeier M, Jaen P, Torres A, Gonzalez S. Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study. J Am Acad Dermatol 2004; 1 (06) 923-930.
  • 16 Gambichler T, Sauermann K, Altintas MA, Altmeyer P, Hoffmann K. Acute effect of solar-simulated radiation on epidermal thickness assessed by confocal laser scanning microscopy in vivo. J Eur Acad Dermatol Venereol 2004; 18 (05) 638-639.
  • 17 Gambichler T, Sauermann K, Altintas MA, Paech V, Kreuter A, Altmeyer P, Hoffmann K. Effects of repeated sunbed exposures on the human skin. In vivo measurements with confocal microscopy. Photodermatol Photoimmunol Photomed 2004; 20 (01) 27-32.
  • 18 Gerger A, Koller S, Weger W, Richtig E, Kerl H, Samonigg H, Krippl P, Smolle J. Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors. Cancer 2006; 107 (01) 193-200.
  • 19 Altintas MA, Altintas AA, Guggenheim M, Niederbichler AD, Knobloch K, Vogt PM. In Vivo Evaluation of Histomorphological Alterations in First Degree Burn Injuries by means of Confocal-Laser Scanning Microscopy-More Than „Virtual Histology?“. J Burn Care Res 2009; 30 (02) 315-320.
  • 20 Altintas MA, Altintas AA, Knobloch K, Guggenheim M, Zweifel CJ, Vogt PM. Differentiation of superficial-partial vs. deep-partial thickness burn injuries in vivo by confocal-laser-scanning microscopy. Burns 2009; 35 (01) 80-86.
  • 21 Welzel J, Schmeller W, Plettenberg A. [dermatoliposclerosis in 20 MHz ultrasound]. Hautarzt 1994; 45 (09) 630-634.
  • 22 Burklein M, Banzer W. Noninvasive blood flow measurement over acupuncture points (Gb21): a pilot study. J Altern Complement Med 2007; 13 (01) 33-37.
  • 23 Kim DE, Phillips TM, Jeng JC, Rizzo AG, Roth RT, Stanford JL, Jablonski KA, Jordan MH. Microvascular assessment of burn depth conversion during varying resuscitation conditions. J Burn Care Rehabil 2001; 22 (06) 406-416.
  • 24 Lupi O, Semenovitch I, Treu C, Bouskela E. Orthogonal polarization technique in the assessment of human skin microcirculation. Int J Dermatol 2008; 47 (05) 425-431.
  • 25 Cobb MJ, Chen Y, Underwood RA, Usui ML, Olerud J, Li X. Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography. J Biomed Opt 2006; 11 (06) 064002
  • 26 Jünger M, Steins A, Hahn M, Häfner HM. Microcirculatory dysfunction in chronic venous insufficiency (CVI). Microcirculation 2000; 7 06 Pt 2 S3-12.
  • 27 Burke JF, Bondoc CC, Quinby WC. Primary burn excision and immediate grafting: a method shortening illness. J Trauma 1974; 14 (05) 389-395.
  • 28 Stücker M, Falkenberg M, Reuther T, Altmeyer P, Lubbers DW. Local oxygen content in the skin is increased in chronic venous incompetence. Microvasc Res 2000; 59 (01) 99-106.
  • 29 Abu-Own A, Shami SK, Chittenden SJ, Farrah J, Scurr JH, Smith PD. Microangiopathy of the skin and the effect of leg compression in patients with chronic venous insufficiency. J Vasc Surg 1994; 19 (06) 1074-1083.
  • 30 Gniadecka M. Localization of dermal edema in lipodermatosclerosis, lymphedema, and cardiac insufficiency. High-frequency ultrasound examination of intradermal echogenicity. J Am Acad Dermatol 1996; 35 (01) 37-41.
  • 31 Volikova AI, Edwards J, Stacey MC, Wallace HJ. High-frequency ultrasound measurement for assessing post-thrombotic syndrome and monitoring compression therapy in chronic venous disease. J Vasc Surg 2009; 50 (04) 820-825.
  • 32 Onorati D, Rossi GG, Idiazabal G. [Effect of elastic stockings on edema related to chronic venous insufficiency. Videocapillaroscopic assessment]. J Mal Vasc 2003; 28 (01) 21-23.
  • 33 Peschen M, Vanscheidt W, Sigmund G, Behrens JO, Schopf E. [Computerized tomography and magnetic resonance tomography studies before and after para-tibial fasciotomy]. Hautarzt 1996; 47 (07) 521-525.
  • 34 Gaber Y, Gehl HB, Schmeller W. Changes of fascia and muscles before and 12 months after successful treatment of recalcitrant venous leg ulcers by shave therapy. Vasa 2003; 32 (04) 205-208.
  • 35 Herouy Y, Kahle B, Idzko M, Eberth I, Norgauer J, Pannier F, Rabe E, Junger M, Bruckner-Tuderman L. Tight junctions and compression therapy in chronic venous insufficiency. Int J Mol Med 2006; 18 (01) 215-219.
  • 36 Ibrahim S, MacPherson DR, Goldhaber SZ. Chronic venous insufficiency: mechanisms and management. Am Heart J 1996; 132 (04) 856-860.
  • 37 Thomas PR, Dormandy JA. White cell and platelet trapping in patients with chronic venous insufficiency. Phlebologie 1988; 41 (04) 771-776.