Osteologie 2015; 24(03): 175-182
DOI: 10.1055/s-0037-1622059
Original- und Übersichtsarbeiten
Schattauer GmbH

Körperliches Training, Fraktur und Knochendichte

Finale Ergebnisse der Erlanger Fitness und Osteoporose-Präventions-Studie (EFOPS)Physical exercise, fractures and bone mineral densityFinal results of the Erlangen-Fitness and Osteoporosis Prevention Study (EFOPS)
W. Kemmler
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg
,
M. Bebenek
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg
,
M. Kohl
2   Department of Medical and Life Sciences, Universität Furtwangen
,
S. von Stengel
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg
› Author Affiliations
Further Information

Publication History

eingereicht: 05 February 2015

angenommen nach Revision: 16 April 2015

Publication Date:
02 January 2018 (online)

Zusammenfassung

Studienziel

Ziel der Untersuchung war es, den Einfluss eines langjährigen körperlichen Trainings auf die Inzidenz klinischer Fraktu-ren zu erfassen.

Material und Methoden

137 frühpostmenopausale Frauen mit Osteopenie wurden 1998 in die EFOPS-Studie eingeschlossen. 86 Personen wählten den durchgängig überwachten Trainingsarm der Studie (TG), 51 traten der Kontrollgruppe (KG) bei. Primärer Endpunkt waren Frakturrate und -risiko von nied-rigtraumatischen klinischen Frakturen, se-kundärer Endpunkt die Knochendichte.

Ergebnisse

105 Teilnehmer mit ca. 1650 Teilnehmerjahren wurden in die 16-Jahres-Messung eingeschlossen. Frakturrisiko (Relatives Risiko: 0,51; 95%-Konfidenzintervall: 0,23–0,97) und -rate (0,42; 0,20–0,86) lagen in der Trainingsgruppe signifikant niedriger als in der Kontrollgruppe. In beiden Gruppen sank die Knochendichte an Lendenwirbelsäu-le (TG: –1,5 ± 5,0 % vs. KG: 5,8 ± 6,4 %) und Schenkelhals (TG: –6,5 ± 4,6 % vs. KG: 9,6 ± 5,0 %) signifikant ab, die Reduktion der KG lag jedoch für beide Regionen signifikant (p ≤ 0,001) höher.

Fazit

Die vorliegende Untersuchung bestätigt mit ausreichender statistischer Power den frakturpräventiven Effekt eines langjährigen körperlichen Trainings bei motivierten, post-menopausalen Frauen mit einem bewusst sportlich aktiven Lebensstil.

Summary

Aim of the study

Fragility and osteoporosis related fractures are an increasingly prominent health problem in our aging society. Physical exercising positively affects bone strength and fall rate and may therefore be an efficient option for actively preventing fracture on an autonomous basis at an advanced age. However, due to low statistical power no present study clearly determines the anti-fracture efficacy of exercise. Thus, the primary aim of this study was to evaluate the effect of exercise on clinical “overall” low-trauma fracture incidence in postmenopausal females.

Material and methods

137 early postmenopausal, osteopenic women living in the area of Erlangen-Nuremberg (Germany) were included in the Erlangen Fitness and Osteoporosis Prevention-study (EFOPS) in 1998. 86 subjects joined the exercise group (EG) and performed a sophisticated consistently supervised exercise training over 16 years, 51 subjects joined the non-training control group (CG) that was requested to maintain their physical activity level and lifestyle. Primary study-endpoint was low-trauma fracture rate and -risk, secondary study-endpoints were BMD at lumbar spine and femoral neck assessed by Dual-Energy X-Ray-Absorptio-metry.

Results

After 16 years of intervention, 105 subjects representing ≈ 1650 patient-years were included in the analysis. The groups significantly differed for “overall” clinical fracture number (rate ratio: 0.47; 95%-Confidence Interval [CI]: 0.24–0.92) and low-trauma overall clinical fracture number (rate ratio: 0.42; 95%-CI: 0.20–0.86) in favour of the exercise group. Bone Mineral Density at the lumbar spine (Mean ± SD: EG: –1.5 ± 5.0 % vs. CG: 5.8 ± 6.4 %) and femoral neck (EG: –6.5 ± 4.6 % vs. CG: –9.6 ± 5.0 %) significantly decreased in both groups, however, the reduction was significantly more pronounced in the CG (p ≤ 0.001).

Conclusion

Generally, this study evidenced the high anti-fracture efficiency of sophisticated multi-purpose exercise programs. With respect to the dimension of fracture reduction, this study averages in the range of potent pharmaceutical interventions. So far, we conclude that for subjects willing and able to exercise frequently, lifelong exercise may be the best choice for autonomous fracture prevention. However, due to the non-randomized study design ultimate evidence to conclude this issue has still to be provided.

 
  • Literatur

  • 1 Hadji P, Klein S, Gothe H. et al. The epidemiology of osteoporosis – Bone Evaluation Study (BEST): an analysis of routine health insurance data. Dtsch Arztebl Int 2013; 110: 52-57.
  • 2 Börjesson M, Hellenius ML, Jansson E. et al. Physical Activity in the Prevention and Treatment of Disease. Stockholm: Swedish Institute of Health; 2010
  • 3 Kemmler W, von Stengel S. Exercise and osteoporosis-related fractures: Perspectives and recommendations of the sports and exercise scientist. Physician and Sportmedicine 2011; 39: 142-157.
  • 4 Kemmler W, von Stengel S. Körperliches Training zur Frakturprophylaxe beim älteren Menschen. Eine systematische Übersicht über Evidenzen und Limitationen aktueller Studien. Osteologie 2012; 21: 88-93.
  • 5 Kemmler W, Haberle L, von Stengel S. Effects of exercise on fracture reduction in older adults: A systematic review and meta-analysis. Osteoporos Int 2013; 24: 1937-1950.
  • 6 Moayyeri A. The association between physical activity and osteoporotic fractures: a review of the evidence and implications for future research. Ann Epidemiol 2008; 18: 827-835.
  • 7 Kemmler W, Lauber D, Weineck J. et al. Benefits of 2 years of intense exercise on bone density, physical fitness, and blood lipids in early postmenopausal osteopenic women: results of the Erlangen Fitness Osteoporosis Prevention Study (EFOPS). Arch Intern Med 2004; 164: 1084-1091.
  • 8 Kemmler W, Lauber D, von Stengel S. et al. Exercise Effects on Risk Factors in Early Postmenopausal Women: 3y EFOPS results. Med Sci Sports Exerc 2005; 37: 194-203.
  • 9 Kemmler W, Von Stengel S, Lauber D. et al. Umsetzung leistungssportlicher Prinzipien in der Osteoporose-Prophylaxe – Zusammenfassende Ergebnisse der Erlangen Fitness und Osteoporose Präventions-Studie (EFOPS). Dtsch Z Sportmed 2007; 58: 427-432.
  • 10 Saxon LK, Robling AG, Alam IM, Turner CH. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone 2005; 36: 454-464.
  • 11 Kemmler W, Lauber D, Weineck J. et al. Trainingssteuerung im Gesundheitssport. Lastvorgabe versus subjektive Intensitätswahl im präventivsportlichen Krafttraining. Dt Ztschr Sportmed 2005; 56: 165-170.
  • 12 DVO. Leitlinie 2014 zur Prophylaxe, Diagnostik und Therapie der Osteoporose bei Männern ab dem 60. Lebensjahr und postmenopausalen Frauen. Available from: http://www.dv-osteologie org/dvo_leitlinien/osteoporose-leitlinie-2014..
  • 13 Salamone LM, Dallal GE, Zantos D. et al. Contributions of vitamin D intake and seasonal sunlight exposure to plasma 25-hydroxyvitamin D concentration in elderly women. Am J Clin Nutr 1994; 59: 80-86.
  • 14 Kemmler W, von Stengel S, Bebenek M. et al. Exercise and fractures in postmenopausal women: 12-year results of the Erlangen Fitness and Osteoporosis Prevention Study (EFOPS). Osteoporos Int 2012; 23: 1267-1276.
  • 15 Kanis JA, Johnell O, Oden A. et al. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 2008; 19: 385-397.
  • 16 Kanis JA, McCloskey EV, Johansson H. et al. Development and use of FRAX in osteoporosis. Osteoporos Int 2010; 21 (Suppl. 02) S407-S413.
  • 17 Howe TE, Shea B, Dawson LJ. et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev 2011; CD000333.
  • 18 Gillespie LD, Robertson MC, Gillespie WJ. et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev 2012; 09: CD007146.
  • 19 Jansen JP, Bergman GJ, Huels J, Olson M. The efficacy of bisphosphonates in the prevention of vertebral, hip, and nonvertebral-nonhip fractures in osteoporosis: a network meta-analysis. Semin Arthritis Rheum. 2011 40. 275-284 e1–e2.
  • 20 Black DM, Delmas PD, Eastell R. et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 2007; 356: 1809-1822.
  • 21 McCloskey EV, Johansson H, Oden A. et al. Denosumab reduces the risk of osteoporotic fractures in postmenopausal women, particularly in those with moderate to high fracture risk as assessed with FRAX. J Bone Miner Res 2012; 27: 1480-1486.
  • 22 Neer RM, Arnaud CD, Zanchetta JR. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001; 344: 1434-1441.
  • 23 Kemmler W, Teschler M, Von Stengel S. Effekt von Ganzkörper-Elektromyostimulation – “A series of studies”. Osteologie 2015; 23: 20-29.
  • 24 von Stengel S, Kemmler W. Alternative Trainingstechnologien zur muskuloskeletalen Prävention bei älteren Menschen. Teil II: Steigerung der Knochenfestigkeit durch Ganzkörpervibration – Eine Übersicht über die akuelle Studienlage. Osteologie 2015; 23: 13-25.
  • 25 Moreland J, Richardson J, Chan DH. et al. Evidence-based guidelines for the secondary prevention of falls in older adults. Gerontology 2003; 49: 93-116.
  • 26 Sherrington C, Tiedemann A, Fairhall N. et al. Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations. N S W Public Health Bull 2011; 22: 78-83.
  • 27 Rubenstein LZ, Josephson KR. The epidemiology of falls and syncope. Clin Geriatr Med 2002; 18: 141-158.
  • 28 Melton 3rd LJ, Crowson CS, O’Fallon WM. et al. Relative contributions of bone density, bone turnover, and clinical risk factors to long-term fracture prediction. J Bone Miner Res 2003; 18: 312-318.
  • 29 Kelley GA, Kelley KS, Kohrt WM. Effects of ground and joint reaction force exercise on lumbar spine and femoral neck bone mineral density in postmenopausal women: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord 2012; 13: 177.
  • 30 Kemmler W, Engelke K, von Stengel S. et al. Long Term Exercise Favorably Affects Menopausal Risk Factors: The EFOPS-study. J Strength Cond Res 2007; 21: 232-239.
  • 31 Iwamoto J, Takeda T, Ichimura S. Effects of exercise training and detraining on bone mineral density in postmenopausal women with osteoporosis. Journal of Orthopaedic Science 2001; 06: 128-132.
  • 32 Windeler J, Antes G, Behrens J. et al. Randomisierte kontrollierte Studien: Kritische Evaluation ist ein Wesensmerkmal ärztlichen Handelns. Dtsch Arztebl 2008; 105: 565-570.
  • 33 Engelke K, Libanati C, Fuerst T. et al. Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr Osteoporos Rep 2013; 11: 246-255.