Nuklearmedizin 2010; 49(S 01): S37-S40
DOI: 10.1055/s-0038-1626532
Review
Schattauer GmbH

Quantification of tumour hypoxia

Functional histology and autoradiographyQuantifizierung der Tumor-HypoxieFunktionelle Histologie und Autoradiographie
J. Bussink
1   Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, The Netherlands
› Author Affiliations
Further Information

Publication History

received: 01 October 2010

accepted: 03 October 2010

Publication Date:
24 January 2018 (online)

Summary

Tumor cell hypoxia is considered one of the important causes for radiation resistance. The introduction of IMRT (intensity modulated radiotherapy) allows specific boosting of tumor subvolumes that may harbour these radioresistant tumour cells. PET imaging of these subvolumes can be incorporated into treatment planning.

However, at this moment microenvironmental changes visualized and quantified by means of PET-imaging need to be validated by highresolution microscopic techniques. This will allow interpretation of imaging techniques with intermediate resolution (such as PET/CT) in relation to complex cellular signaling in response to anti-cancer treatments.

Zusammenfassung

Tumorzellhypoxie ist eine der bedeutendsten Ursachen für Strahlenresistenz. Die Einführung der intensitätsmodulierten Strahlentherapie (IMRT) erlaubt spezifische Dosiserhöhungen in Tumor-Subvolumina, in denen solche strahlenresistenten Tumorzellen angereichert sind. Bei der Planung solcher Boost-Bestrahlungen auf hypoxische Gebiete kann die PET-Bildgebung nützlich sein.

Vor der routinemäßigen Anwendung ist jedoch eine Validierung von in der PET visualisierten und quantifizierten Veränderungen des Mikromilieus mittels hochauflösender mikro skopischer Techniken notwendig. Dies würde eine Interpretation der Bildgebungstechniken mit mittlerer Auflösung (z. B. PET/ CT) in Relation zu komplexen zellulären Signaltransduktionen nach onkologischen Therapien erlauben.

 
  • References

  • 1 Bentzen SM. Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol 2005; 6: 112-117.
  • 2 Brizel DM, Scully SP, Harrelson JM. et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 1996; 56: 941-943.
  • 3 Busk M, Horsman MR, Jakobsen S. et al. Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage. Eur J Nucl Med Mol Imaging 2008; 35: 2294-2303.
  • 4 Bussink J, Kaanders JHAM, van der Kogel AJ. Tumor hypoxia at the micro regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 2003; 67: 3-15.
  • 5 Bussink J, van Herpen CM, Kaanders JH, Oyen WJ. PET-CT for response assessment and treatment adaptation in head and neck cancer. Lancet Oncol 2010; 11: 661-669.
  • 6 Covell DG, Barbet J, Holton OD. et al. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab')2, and Fab' in mice. Cancer Res 1986; 46: 3969-3978.
  • 7 Gatenby RA, Gawlinski ET. A reaction-diffusion model of cancer invasion. Cancer Res 1996; 56: 5745-5753.
  • 8 Grosu AL, Souvatzoglou M, Röper B. et al. Hypoxia imaging with FAZA-PET and theoretical considerations with regard to do se painting for individualization of radiotherapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 2007; 69: 541-551.
  • 9 Hockel M, Schlenger K, Aral B. et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996; 56: 4509-4515.
  • 10 Hoeben BA, Kaanders JH, Franssen GM. et al. PET of hypoxia with 89Zr-labeled cG250-F(ab')2 in head and neck tumors. J Nucl Med 2010; 51: 1076-1083.
  • 11 Juweid M, Sharkey RM, Behr TM. et al. Clinical evaluation of tumor targeting with the anticarcinoembryonic antigen murine monoclonal antibody fragment, MN-14 F(ab)2. Cancer 1996; 78: 157-168.
  • 12 Ljungkvist ASE, Bussink J, Rijken PFJW. et al. Vascular architecture, hypoxia and proliferation in firstgeneration xenografts of human head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 2002; 54: 215-228.
  • 13 Ljungkvist AS, Bussink J, Kaanders JH. et al. Hypoxic cell turnover in different solid tumor lines. Int J Radiat Oncol Biol Phys 2005; 62: 1157-1168.
  • 14 Ljungkvist AS, Bussink J, Kaanders JH. et al. Dynamics of hypoxia, proliferation and apoptosis after irradiation in a murine tumor model. Radiat Res 2006; 165: 326-336.
  • 15 Ljungkvist AS, Bussink J, Kaanders JH, van der Kogel AJ. Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat Res 2007; 167: 127-145.
  • 16 Massuger LF, Boerman OC, Corstens FH. et al. Biodistribution of iodine-125 and indium-111 labeled OV-TL 3 intact antibodies and F(ab')2 fragments in tumor-bearing athymic mice. Anticancer Res 1991; 11: 2051-2057.
  • 17 Nehmeh SA, Lee NY, Schröder H. et al. Reproducibility of intratumor distribution of 18F-fluoro – misonidazole in head and neck cancer. Int J Radiat Oncol Biol Phys 2008; 70: 235-242.
  • 18 Nordsmark M, Loncaster J, Aquino-Parsons C. et al. The prognostic value of pimonidazole and tumour pO2 in human cervix carcinomas after radiation therapy: a prospective international multi-center study. Radiother Oncol 2006; 80: 123-131.
  • 19 Nordsmark M, Bentzen SM, Rudat V. et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 2005; 77: 18-24.
  • 20 Opavsky R, Pastorekova S, Zelnik V. et al. Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics 1996; 33: 480-487.
  • 21 Pastorekova S, Parkkila S, Zavada J. Tumor-associated carbonic anhydrases and their clinical significance. Adv Clin Chem 2006; 42: 167-216.
  • 22 Porter JR. Louis Pasteur, achievements and disappointments 1861. Bacteriol Rev 1961; 25: 389-403.
  • 23 Rademakers SE, Span PN, Kaanders JH. et al. Molecular aspects of tumour hypoxia. Mol Oncol 2008; 2: 41-53.
  • 24 Rajendran JG, Mankoff DA, O'Sullivan F. et al. Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 2004; 10: 2245-2252.
  • 25 Rischin D, Hicks RJ, Fisher R. et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 2006; 24: 2098-2104.
  • 26 Rofstad EK, Galappathi K, Mathiesen B, Ruud EB. Fluctuating and diffusion-limited hypoxia in hypoxia-induced metastasis. Clin Cancer Res 2007; 13: 1971-1978.
  • 27 Troost EG, Bussink J, Kaanders JH. et al. Comparison of different methods of CAIX quantification in relation to hypoxia in three human head and neck tumor lines. Radiother Oncol 2005; 76: 194-199.
  • 28 Troost EG, Laverman P, Kaanders JH. et al. Imaging hypoxia after oxygenation-modification: comparing [18F]FMISO autoradiography with pimonidazole immunohistochemistry in human xenograft tumors. Radiother Oncol 2006; 80: 157-164.
  • 29 Troost EG, Laverman P, Philippens ME. et al. Correlation of [18F]FMISO autoradiography and pimonidazole immunohistochemistry in human head and neck carcinoma xenografts. Eur J Nucl Med Mol Imaging 2008; 35: 1803-1811.
  • 30 Troost EG, Bussink J, Hoffmann AL. et al. 18FLT-PET-CT for early response monitoring and dose escalation in oropharyngeal tumors. J Nucl Med 2010; 51: 866-874.
  • 31 Warburg O. On respiratory impairment in cancer cells. Science 1956; 124: 269-270.