Nervenheilkunde 2009; 28(10): 691-700
DOI: 10.1055/s-0038-1627143
Nuklearmedizinische Bildgebung
Schattauer GmbH

Klinischer Nutzen nuklearmedizinischer Verfahren in der Diagnostik von Bewegungsstörungen

Benefit of isotope techniques for the diagnostics of movement disorders
K. Tatsch
1   Klinik für Nuklearmedizin, Städtisches Klinikum Karlsruhe
,
T. Kuwert
2   Nuklearmedizinische Klinik, Universitätsklinikum Erlangen
,
A. Ceballos-Baumann
3   Neurologisches Krankenhaus München, Schön Kliniken
,
H. Boecker
4   FE Klinische Funktionelle Neurobildgebung, Radiologische Universitätsklinik, Friedrich-Wilhelms-Universität Bonn
› Author Affiliations
Further Information

Publication History

Eingegangen am: 07 June 2009

angenommen am: 09 June 2009

Publication Date:
19 January 2018 (online)

Zusammenfassung

Eine frühzeitige Diagnosestellung hat für Patienten mit Bewegungsstörungen wichtige klinische Implikationen, insbesondere für das therapeutische Vorgehen und die Prognose. Die nuklearmedizinische Bildgebung mit PET und SPECT liefert hierzu wichtige – zur klinischen, genetischen und elektrophysiologischen Diagnostik komplementäre – Informationen, welche zur pathophysiologischen Charakterisierung, zur differenzialdiagnostischen Abgrenzung und als in vivo Surrogatmarker für Verlaufsuntersuchungen dienen können. Die Übersicht behandelt relevante Befunde zu Perfusion (rCBF), Metabolismus (rCMRGlc) und Neurotransmission bei Parkinson- Syndromen, essenziellem Tremor, Morbus Huntington und Dystonie.

Summary

In patients with movement disorders, imaging with isotope techniques such as PET and SPECT, may provide complementary information to the clinical, genetic, and electrophysiological workup, which may impact on individual therapeutic strategies and appraisal of prognosis. Moreover, imaging data may be useful as in vivo biomarkers for longitudinal assessments. The following review summarizes relevant data on perfusion (rCBF), metabolism (rCMRGlc) and neurotransmission in parkinsonian disorders, essential tremor, Huntington’s disease, and dystonia.

 
  • Literatur

  • 1 Leitlinie.. Parkinson-Syndrome: Diagnostik und Therapie. Leitlinien für Diagnostik und Therapie in der Neurologie. 4. Aufl. Stuttgart: Thieme Verlag; 2008
  • 2 Catafau AM, Tolosa E. Impact of dopamine transporter SPECT using 123I-Ioflupane on diagnosis and management of patients with clinically uncertain Parkinsonian syndromes. Mov Disord 2004; 19 (Suppl. 10) 1175-82.
  • 3 Hughes AJ. et al. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55 (Suppl. 03) 181-4.
  • 4 Marshall VL. et al. Parkinson’s disease is overdiagnosed clinically at baseline in diagnostically uncertain cases: a 3-year European multicenter study with repeat [123I]FP-CIT SPECT. Mov Disord 2009; 24 (Suppl. 04) 500-8.
  • 5 McKeith I. et al. Dementia with Lewy bodies. Lancet Neurol 2004; 3 (Suppl. 01) 19-28.
  • 6 Meara J, Bhowmick BK, Hobson P. Accuracy of diagnosis in patients with presumed Parkinson’s disease. Age Ageing 1999; 28 (Suppl. 02) 99-102.
  • 7 Booij J. et al. Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism. Eur J Nucl Med 1999; 26 (Suppl. 02) 171-82.
  • 8 Brooks DJ. Neuroimaging in Parkinson’s disease. NeuroRx 2004; 1 (Suppl. 02) 243-54.
  • 9 Brooks DJ. Assessment of Parkinson’s disease with imaging. Parkinsonism Relat Disord 2007; 13 (Suppl. 03) S268-75.
  • 10 Brucke T. et al. SPECT and PET imaging of the dopaminergic system in Parkinson’s disease. J Neurol 2000; 247 (Suppl. 04) IV/2-7.
  • 11 Seibyl J. et al. Unique roles of SPET brain imaging in clinical and research studies. Lessons from Parkinson’s disease research. Q J Nucl Med Mol Imaging 2005; 49 (Suppl. 02) 215-21.
  • 12 Tatsch K. Imaging of the dopaminergic system in parkinsonism with SPET. Nucl Med Commun 2001; 22 (Suppl. 07) 819-27.
  • 13 Van Laere K. et al. Dual-tracer dopamine transporter and perfusion SPECT in differential diagnosis of parkinsonism using template-based discriminant analysis. J Nucl Med 2006; 47 (Suppl. 03) 384-92.
  • 14 Frey KA, Koeppe RA, Kilbourn MR. Imaging the vesicular monoamine transporter. Adv Neurol 2001; 86: 237-47.
  • 15 Brucke T. et al. Measurement of the dopaminergic degeneration in Parkinson’s disease with [123I] beta-CIT and SPECT. Correlation with clinical findings and comparison with multiple system atrophy and progressive supranuclear palsy. J Neural Transm Suppl 1997; 50: 9-24.
  • 16 Booij J. et al. The clinical benefit of imaging striatal dopamine transporters with [123I]FP-CIT SPET in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism. Eur J Nucl Med 2001; 28 (Suppl. 03) 266-72.
  • 17 Benamer TS. et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord 2000; 15 (Suppl. 03) 503-10.
  • 18 Feigin A. et al. Parkinsonian patients without evidence of a dopaminergic deficit: An F-dopa and FDG study. Neurology 2005; 64: A234-A5.
  • 19 Brooks DJ. Morphological and functional imaging studies on the diagnosis and progression of Parkinson’s disease. J Neurol 2000; 247 (Suppl. 02) II11-8.
  • 20 Marek KL. et al. [123I] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 1996; 46 (Suppl. 01) 231-7.
  • 21 Winogrodzka A. et al. [123I]beta-CIT SPECT is a useful method for monitoring dopaminergic degeneration in early stage Parkinson’s disease. J Neurol Neurosurg Psychiatry 2003; 74 (Suppl. 03) 294-8.
  • 22 Wolters EC. et al. Preclinical (premotor) Parkinson’s disease. J Neurol 2000; 247 (Suppl. 02) II103-9.
  • 23 Rinne JO. et al. Usefulness of a dopamine transporter PET ligand [18F]beta-CFT in assessing disability in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1999; 67 (Suppl. 06) 737-41.
  • 24 Tatsch K. et al. Relationship between clinical features of Parkinson’s disease and presynaptic dopamine transporter binding assessed with [123I]IPT and single-photon emission tomography. Eur J Nucl Med 1997; 24 (Suppl. 04) 415-21.
  • 25 Morrish PK. et al. Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry 1998; 64 (Suppl. 03) 314-9.
  • 26 Nurmi E. et al. Rate of progression in Parkinson’s disease: a 6-[18F]fluoro-L-dopa PET study. Mov Disord 2001; 16 (Suppl. 04) 608-15.
  • 27 Schwarz J. et al. Loss of dopamine transporter binding in Parkinson’s disease follows a single exponential rather than linear decline. J Nucl Med 2004; 45 (Suppl. 10) 1694-7.
  • 28 Stoffers D. et al. Early-stage [123I]beta-CIT SPECT and long-term clinical follow-up in patients with an initial diagnosis of Parkinson’s disease. Eur J Nucl Med Mol Imaging 2005; 32 (Suppl. 06) 689-95.
  • 29 Pirker W. et al. Progression of dopaminergic degeneration in Parkinson’s disease and atypical parkinsonism: a longitudinal beta-CIT SPECT study. Mov Disord 2002; 17 (Suppl. 01) 45-53.
  • 30 Koch W. et al. Does combined imaging of the preand postsynaptic dopaminergic system increase the diagnostic accuracy in the differential diagnosis of parkinsonism?. Eur J Nucl Med Mol Imaging 2007; 34 (Suppl. 08) 1265-73.
  • 31 Tatsch K. et al. Differential diagnosis of parkinsonism with [F-18]DMFP PET. J Nucl Med 2008; 49 (Suppl. 01) 5P-6P.
  • 32 Nagayama H. et al. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2005; 76 (Suppl. 02) 249-51.
  • 33 Post KK, Singer C, Papapetropoulos S. Cardiac denervation and dysautonomia in Parkinson’s disease: a review of screening techniques. Parkinsonism Relat Disord 2008; 14 (Suppl. 07) 524-31.
  • 34 Raffel DM. et al. PET measurement of cardiac and nigrostriatal denervation in Parkinsonian syndromes. J Nucl Med 2006; 47 (Suppl. 11) 1769-77.
  • 35 Saiki S. et al. Cardiac 123I-MIBG scintigraphy can assess the disease severity and phenotype of PD. J Neurol Sci 2004; 220 1–2 105-11.
  • 36 Spiegel J. et al. Myocardial sympathetic degeneration correlates with clinical phenotype of Parkinson’s disease. Mov Disord 2007; 22 (Suppl. 07) 1004-8.
  • 37 Sawada H. et al. Diagnostic accuracy of cardiac metaiodobenzylguanidine scintigraphy in Parkinson disease. Eur J Neurol 2009; 16 (Suppl. 02) 174-82.
  • 38 Eckert T. et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005; 26 (Suppl. 03) 912-21.
  • 39 Tatsch K. Imaging of the dopaminergic system in differential diagnosis of dementia. Eur J Nucl Med Mol Imaging 2008; 35 (Suppl. 01) S51-7.
  • 40 Piggott MA. et al. Striatal dopaminergic markers in dementia with Lewy bodies, Alzheimer’s and Parkinson’s diseases: rostrocaudal distribution. Brain 1999; 122 Pt 8 1449-68.
  • 41 O’Brien JT. et al. Dopamine transporter loss visualized with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies. Arch Neurol 2004; 61 (Suppl. 06) 919-25.
  • 42 Walker Z. et al. Differentiation of dementia with Lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry 2002; 73 (Suppl. 02) 134-40.
  • 43 McKeith I. et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 2007; 6 (Suppl. 04) 305-13.
  • 44 Ransmayr G. et al. Striatal dopamine transporter function in dementia with Lewy bodies and Parkinson’s disease. Eur J Nucl Med 2001; 28 (Suppl. 10) 1523-8.
  • 45 Walker Z. et al. Striatal dopamine transporter in dementia with Lewy bodies and Parkinson disease: a comparison. Neurology 2004; 62 (Suppl. 09) 1568-72.
  • 46 O’Brien JT. et al. Diagnostic accuracy of 123I-FP-CIT SPECT in possible dementia with Lewy bodies. Br J Psychiatry 2009; 194 (Suppl. 01) 34-9.
  • 47 Walker Z. et al. Dementia with Lewy bodies: a comparison of clinical diagnosis, FP-CIT single photon emission computed tomography imaging and autopsy. J Neurol Neurosurg Psychiatry 2007; 78 (Suppl. 11) 1176-81.
  • 48 Herholz K, Carter SF, Jones M. Positron emission tomography imaging in dementia. Br J Radiol 2007; 80 Spec No 2 S160-7.
  • 49 Silverman DH. Brain 18F-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med 2004; 45 (Suppl. 04) 594-607.
  • 50 Van Heertum RL, Tikofsky RS. Positron emission tomography and single-photon emission computed tomography brain imaging in the evaluation of dementia. Semin Nucl Med 2003; 33 (Suppl. 01) 77-85.
  • 51 Rajput AH. et al. Clinicopathologic observations in essential tremor: report of six cases. Neurology 1991; 41 (Suppl. 09) 1422-4.
  • 52 Hallett M, Dubinsky RM. Glucose metabolism in the brain of patients with essential tremor. J Neurol Sci 1993; 114 (Suppl. 01) 45-8.
  • 53 Colebatch JG. et al. Preliminary report: activation of the cerebellum in essential tremor. Lancet 1990; 336 8722 1028-30.
  • 54 Jenkins IH, Frackowiak RS. Functional studies of the human cerebellum with positron emission tomography. Rev Neurol (Paris) 1993; 149 (Suppl. 11) 647-53.
  • 55 Wills AJ. et al. Red nuclear and cerebellar but no olivary activation associated with essential tremor: a positron emission tomographic study. Ann Neurol 1994; 36 (Suppl. 04) 636-42.
  • 56 Bucher SF. et al. Activation mapping in essential tremor with functional magnetic resonance imaging. Ann Neurol 1997; 41 (Suppl. 01) 32-40.
  • 57 Boecker H. et al. The effect of ethanol on alcohol-responsive essential tremor: a positron emission tomography study. Ann Neurol 1996; 39 (Suppl. 05) 650-8.
  • 58 Tempel LW, Perlmutter JS. Abnormal vibration-induced cerebral blood flow responses in idiopathic dystonia. Brain 1990; 113 Pt 3 691-707.
  • 59 Butterworth S. et al. Abnormal cortical sensory activation in dystonia: an fMRI study. Mov Disord 2003; 18 (Suppl. 06) 673-82.
  • 60 Feiwell RJ. et al. Diminished regional cerebral blood flow response to vibration in patients with blepharospasm. Neurology 1999; 52 (Suppl. 02) 291-7.
  • 61 Pujol J. et al. Brain cortical activation during guitarinduced hand dystonia studied by functional MRI. Neuroimage 2000; 12 (Suppl. 03) 257-67.
  • 62 Ceballos-Baumann AO. et al. Motor reorganization in acquired hemidystonia. Ann Neurol 1995; 37 (Suppl. 06) 746-57.
  • 63 Ceballos-Baumann AO. et al. Overactive prefrontal and underactive motor cortical areas in idiopathic dystonia. Ann Neurol 1995; 37 (Suppl. 03) 363-72.
  • 64 Ceballos-Baumann AO. et al. Botulinum toxin does not reverse the cortical dysfunction associated with writer’s cramp. A PET study. Brain 1997; 120 Pt 4 571-82.
  • 65 Ibanez V. et al. Deficient activation of the motor cortical network in patients with writer’s cramp. Neurology 1999; 53 (Suppl. 01) 96-105.
  • 66 Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci 2007; 30: 575-621.
  • 67 Paulsen JS. et al. Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry 2008; 79 (Suppl. 08) 874-80.
  • 68 A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 1993; 72 (Suppl. 06) 971-83.
  • 69 Langbehn DR, Hayden MR, Paulsen JS. CAG-repeat length and the age of onset in Huntington disease (HD): A review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet. 2009 Jun 22; E-pub ahead of print.
  • 70 Lange H. et al. Morphometric studies of the neuropathological changes in choreatic diseases. J Neurol Sci 1976; 28 (Suppl. 04) 401-25.
  • 71 Aylward EH. et al. Longitudinal change in basal ganglia volume in patients with Huntington’s disease. Neurology 1997; 48 (Suppl. 02) 394-9.
  • 72 Paulsen JS. et al. Preparing for preventive clinical trials: the Predict-HD study. Arch Neurol 2006; 63 (Suppl. 06) 883-90.
  • 73 Kuhl DE. et al. Patterns of cerebral glucose utilization in Parkinson’s disease and Huntington’s disease. Ann Neurol 1984; 15 Suppl S119-25.
  • 74 Kuhl DE. et al. Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 1982; 12 (Suppl. 05) 425-34.
  • 75 Kuwert T. et al. Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 1990; 113 Pt 5 1405-23.
  • 76 Ginovart N. et al. PET study of the pre- and postsynaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain 1997; 120 Pt 3 503-14.
  • 77 Turjanski N. et al. Striatal D1 and D2 receptor binding in patients with Huntington’s disease and other choreas. A PET study. Brain 1995; 118 Pt 3 689-96.
  • 78 Holthoff VA. et al. Positron emission tomography measures of benzodiazepine receptors in Huntington’s disease. Ann Neurol 1993; 34 (Suppl. 01) 76-81.
  • 79 Kunig G. et al. Benzodiazepine receptor binding in Huntington’s disease: [11C]flumazenil uptake measured using positron emission tomography. Ann Neurol 2000; 47 (Suppl. 05) 644-8.
  • 80 Boecker H. et al. SPECT with HMPAO compared to PET with FDG in Huntington disease. J Comput Assist Tomogr 1994; 18 (Suppl. 04) 542-8.
  • 81 Pirker W. et al. Iodine-123-epidepride-SPECT: studies in Parkinson’s disease, multiple system atrophy and Huntington’s disease. J Nucl Med 1997; 38 (Suppl. 11) 1711-7.
  • 82 Young AB. et al. PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol 1986; 20 (Suppl. 03) 296-303.
  • 83 Backman L. et al. Cognitive deficits in Huntington’s disease are predicted by dopaminergic PET markers and brain volumes. Brain 1997; 120 Pt 12 2207-17.
  • 84 Bonelli RM, Cummings JL. Frontal-subcortical dementias. Neurologist 2008; 14 (Suppl. 02) 100-7.
  • 85 Kuhl DE. et al. Local cerebral glucose utilization in symptomatic and presymptomatic Huntington’s disease. Res Publ Assoc Res Nerv Ment Dis 1985; 63: 199-209.
  • 86 Hayden MR. et al. Positron emission tomography in the early diagnosis of Huntington’s disease. Neurology 1986; 36 (Suppl. 07) 888-94.
  • 87 Hayden MR. et al. The combined use of positron emission tomography and DNA polymorphisms for preclinical detection of Huntington’s disease. Neurology 1987; 37 (Suppl. 09) 1441-7.
  • 88 Mazziotta JC. et al. Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N Engl J Med 1987; 316 (Suppl. 07) 357-62.
  • 89 Kuwert T. et al. Striatal glucose consumption in chorea- free subjects at risk of Huntington’s disease. J Neurol 1993; 241 (Suppl. 01) 31-6.
  • 90 Kuwert T. et al. Comparison of somatosensory evoked potentials with striatal glucose consumption measured by positron emission tomography in the early diagnosis of Huntington’s disease. Mov Disord 1993; 8 (Suppl. 01) 98-106.
  • 91 Weeks RA. et al. Striatal D1 and D2 dopamine receptor loss in asymptomatic mutation carriers of Huntington’s disease. Ann Neurol 1996; 40 (Suppl. 01) 49-54.
  • 92 Antonini A. et al. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington’s disease. Brain 1996; 119 Pt 6 2085-95.
  • 93 Harris Gj. et al. Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington’s disease. Brain 1999; 122 Pt 9 1667-78.
  • 94 Feigin A. et al. Thalamic metabolism and symptom onset in preclinical Huntington’s disease. Brain 2007; 130 Pt 11 2858-67.
  • 95 Andrews TC. et al. Huntington’s disease progression. PET and clinical observations. Brain 1999; 122 Pt 12 2353-63.
  • 96 Kuwert T. et al. Regional cerebral glucose consumption measured by positron emission tomography in patients with Wilson’s disease. Eur J Nucl Med 1992; 19 (Suppl. 02) 96-101.
  • 97 Dubinsky RM. et al. Regional brain glucose metabolism in neuroacanthocytosis. Neurology 1989; 39 (Suppl. 09) 1253-5.
  • 98 Otsuka M. et al. Glucose metabolism in the cortical and subcortical brain structures in multiple system atrophy and Parkinson’s disease: a positron emission tomographic study. J Neurol Sci 1996; 144 1–2 77-83.
  • 99 Leger GC. et al. Dementia-like presentation of striatal hypermetabolic state with antistriatal antibodies responsive to steroids. Arch Neurol 2004; 61 (Suppl. 05) 754-7.
  • 100 Weindl A. et al. Increased striatal glucose consumption in Sydenham’s chorea. Mov Disord 1993; 8 (Suppl. 04) 437-44.
  • 101 Drzezga A. Klinischer Nutzen nuklearmedizinischer Verfahren in der Demenzdiagnostik. Nervenheilkunde 2009; 28: 709-718.