Nervenheilkunde 2009; 28(10): 719-726
DOI: 10.1055/s-0038-1627144
Nuklearmedizinische Bildgebung
Schattauer GmbH

Nuklearmedizinische Bildgebung bei depressiven Störungen und antidepressiver Therapie

Neuroimaging with radiotracers in depressive disorders and antidepressant treatment
S. Hesse
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Leipzig AöR
,
O. Sabri
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Leipzig AöR
,
H. Brockmann
2   Klinik und Poliklinik für Nuklearmedizin, Friedrich-Wilhelms-Universität Bonn
,
H. J. Biersack
2   Klinik und Poliklinik für Nuklearmedizin, Friedrich-Wilhelms-Universität Bonn
,
H. Boecker
3   FE Klinische Funktionelle Neurobildgebung, Radiologische Universitätsklinik, Friedrich-Wilhelms-Universität Bonn
› Author Affiliations
Further Information

Publication History

Eingegangen am: 08 June 2009

angenommen am: 10 June 2009

Publication Date:
19 January 2018 (online)

Zusammenfassung

In jüngster Zeit wurden große Fortschritte bei der Aufklärung der zugrunde liegenden neurobiologischen Mechanismen depressiver Störungen gemacht, nicht zuletzt durch den Einsatz nuklearmedizinischer bildgebender Verfahren wie der Positronen-Emissions-Tomografie (PET) und der Single-Photonen- Emissions-Computertomografie (SPECT). Hiermit können Veränderungen auf molekularer Ebene in vivo, z. B. der zentralen monoaminergen Systeme, dargestellt und die spezifischen, bei der Depression pathophysiologisch bedeutsamen neuronalen Schaltkreise identifiziert werden. Eine routinemäßige klinische Anwendung dieser Verfahren bei depressiven Störungen hat sich bislang nicht etabliert. Perspektivisch sind die nuklearmedizinischen Verfahren aber hinsichtlich eines integrativen diagnostischen Ansatzes und im Rahmen eines personalisierten Therapiekonzeptes betroffener Patienten nutzbar.

Summary

This review highlights recent progress made in the understanding of the underlying neuro - biology of depressive disorders based on positron emission tomography (PET) and single photon emission computed tomography (SPECT). These radioisotope techniques allow in vivo molecular imaging, in particular of the brain monoaminergic system, and contribute to the identification of affected neuronal circuits underlying mood disturbances. Their routine clinical usage, however, has not been established yet, but especially PET holds promise to be part of an integrative clinical approach contributing to individualized treatment of patients with depression.

 
  • Literatur

  • 1 Aznavour N. et al. A PET imaging study of 5-HT1A receptors in cat brain after acute and chronic fluoxetine treatment. Neuroimage 2006; 33 (Suppl. 03) 834-842.
  • 2 Baker SC, Frith CD, Dolan RJ. The interaction between mood and cognitive function studied with PET. Psychol Med 1997; 27 (Suppl. 03) 565-578.
  • 3 Baxter LR. et al. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 1989; 46 (Suppl. 03) 243-250.
  • 4 Bench CJ. et al. Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions. Psychol Med 1993; 23 (Suppl. 03) 579-590.
  • 5 Bhagwagar Z. et al. Increased 5-HT2A receptor binding in euthymic, medication-free patients recovered from depression: a positron emission study with [11C]MDL 100,907. Am J Psychiatry 2006; 163 (Suppl. 09) 1580-1587.
  • 6 Bhagwagar Z. et al. 5-HTT binding in recovered depressed patients and healthy volunteers: a positron emission tomography study with [11C]DASB. Am J Psychiatry 2007; 164 (Suppl. 12) 1858-1865.
  • 7 Bremner JD. et al. Effects of antidepressant treatment on neural correlates of emotional and neutral declarative verbal memory in depression. J Affect Disord 2007; 101 1–3 99-111.
  • 8 Brockmann H. et al. The value of HMPAO SPECT in predicting treatment-response in patients with major depression treated with citalopram. Psychiatry research Neuroimaging 2009 ; im Duck.
  • 9 Brody AL. et al. Brain metabolic changes in major depressive disorder from pre- to post-treatment with paroxetine. Psychiatry Res 1999; 91 (Suppl. 03) 127-139.
  • 10 Brust P. et al. In vivo measurement of the serotonin transporter with (S)-([18F]fluoromethyl)-(+)- McN5652. Neuropsychopharmacology 2003; 28 (Suppl. 11) 2010-2019.
  • 11 Buchsbaum MS. et al. Effect of sertraline on regional metabolic rate in patients with affective disorder. Biol Psychiatry 1997; 41 (Suppl. 01) 15-22.
  • 12 Cannon DM. et al. Dopamine type-1 receptor binding in major depressive disorder assessed using positron emission tomography and [11C]NNC-112. Neuropsychopharmacology 2009; 34 (Suppl. 05) 1277-1287.
  • 13 Caspi A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301 5631 386-389.
  • 14 D’Haenen HA, Bossuyt A. Dopamine D2 receptors in depression measured with single photon emission computed tomography. Biol Psychiatry 1994; 35 (Suppl. 02) 128-132.
  • 15 Ding YS, Lin KS, Logan J. PET imaging of norepinephrine transporters. Curr Pharm Des 2006; 12 (Suppl. 30) 3831-3845.
  • 16 Drevets WC. et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386 6627 824-827.
  • 17 Drevets WC, Price JL. Neuroimaging and neuropathological studies of mood disorders. In: Jwm L. editor. Biology of Depression: from novel insights to therapeutic strategies. Weinheim: Wiley-VCH; 2005
  • 18 Drevets WC. et al. Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nucl Med Biol 2007; 34 (Suppl. 07) 865-877.
  • 19 Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 2008; 213 1–2 93-118.
  • 20 Ebert D, Feistel H, Barocka A. Effects of sleep deprivation on the limbic system and the frontal lobes in affective disorders: a study with Tc-99m-HMPAO SPECT. Psychiatry Res 1991; 40 (Suppl. 04) 247-251.
  • 21 Ebert D, Ebmeier KP. The role of the cingulate gyrus in depression: from functional anatomy to neurochemistry. Biol Psychiatry 1996; 39 (Suppl. 12) 1044-1050.
  • 22 Elliott R. et al. Abnormal neural response to feedback on planning and guessing tasks in patients with unipolar depression. Psychol Med 1998; 28 (Suppl. 03) 559-571.
  • 23 Elliott R. et al. The neural basis of mood-congruent processing biases in depression. Arch Gen Psychiatry 2002; 59 (Suppl. 07) 597-604.
  • 24 Fales C. et al. Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biol Psychiatry 2008; 63 (Suppl. 04) 377-384.
  • 25 Frokjaer VG. et al. High familial risk for mood disorder is associated with low dorsolateral prefrontal cortex serotonin transporter binding. Neuroimage 2009; 46 (Suppl. 02) 360-366.
  • 26 Galynker II. et al. Hypofrontality and negative symptoms in major depressive disorder. J Nucl Med 1998; 39 (Suppl. 04) 608-612.
  • 27 Giovacchini G. et al. Brain incorporation of [11C]arachidonic acid in young healthy humans measured with positron emission tomography. J Cereb Blood Flow Metab 2002; 22 (Suppl. 12) 1453-1462.
  • 28 Giovacchini G. et al. Differential effects of paroxetine on raphe and cortical 5-HT1A binding: a PET study in monkeys. Neuroimage 2005; 8 (Suppl. 01) 238-248.
  • 29 Hasler G. et al. Neural response to catecholamine depletion in unmedicated subjects with major depressive disorder in remission and healthy subjects. Arch Gen Psychiatry 2008; 65 (Suppl. 05) 521-531.
  • 30 Hesse S. et al. Advances in in vivo imaging of serotonergic neurons in neuropsychiatric disorders. Neurosci Biobehav Rev 2004; 28 (Suppl. 06) 547-563.
  • 31 Hirvonen J. et al. Striatal dopamine D2 receptors in medication-naive patients with major depressive disorder as assessed with [11C]raclopride PET. Psychopharmacology 2008; 197 (Suppl. 04) 581-590.
  • 32 Holthoff VA. et al. Changes in brain metabolism associated with remission in unipolar major depression. Acta Psychiatr Scand 2004; 110 (Suppl. 03) 184-194.
  • 33 Innis RB. et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 2007; 27 (Suppl. 09) 1533-1539.
  • 34 Ito H. et al. Hypoperfusion in the limbic system and prefrontal cortex in depression: SPECT with anatomic standardization technique. J Nucl Med 1996; 37 (Suppl. 03) 410-414.
  • 35 Klimek V. et al. Dopaminergic abnormalities in amygdaloid nuclei in major depression: a postmortem study. Biol Psychiatry 2002; 52 (Suppl. 07) 740-748.
  • 36 Kondo H, Saleem KS, Price JL. Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 2005; 493 (Suppl. 04) 479-509.
  • 37 Kugaya A. et al. Brain serotonin transporter availability predicts treatment response to selective serotonin reuptake inhibitors. Biol Psychiatry 2004; 56 (Suppl. 07) 497-502.
  • 38 Lanzenberger RR. et al. Reduced serotonin-1A receptor binding in social anxiety disorder. Biol Psychiatry 2007; 61 (Suppl. 09) 1081-1089.
  • 39 Little JT. et al. Bupropion and venlafaxine responders differ in pretreatment regional cerebral metabolism in unipolar depression. Biol Psychiatry 2005; 57 (Suppl. 03) 220-228.
  • 40 Lopez-Figueroa A. et al. Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiatry 2004; 55 (Suppl. 03) 225-233.
  • 41 Lundberg J. et al. A PET study on regional coexpression of 5-HT1A receptors and 5-HTT in the human brain. Psychopharmacology 2007; 195 (Suppl. 03) 425-433.
  • 42 Mayberg HS. et al. Paralimbic hypoperfusion in unipolar depression. J Nucl Med 1994; 35 (Suppl. 06) 929-934.
  • 43 Mayberg HS. Frontal lobe dysfunction in secondary depression. J Neuropsychiatry Clin Neurosci 1994; 6 (Suppl. 04) 428-442.
  • 44 Mayberg HS. et al. Cingulate function in depression: a potential predictor of treatment response. Neuroreport 1997; 8 (Suppl. 04) 1057-1061.
  • 45 Meyer JH. et al. Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [11C]DASB PET imaging study. Am J Psychiatry 2001; 158 (Suppl. 11) 1843-1849.
  • 46 Meyer JH. et al. Brain serotonin transporter binding potential measured with carbon 11-labeled DASB positron emission tomography: effects of major depressive episodes and severity of dysfunctional attitudes. Arch Gen Psychiatry 2004; 61 (Suppl. 12) 1271-1279.
  • 47 Meyer JH. et al. Dysfunctional attitudes and 5-HT2 receptors during depression and self-harm. Am J Psychiatry 2003; 160 (Suppl. 01) 90-99.
  • 48 Meyer JH. et al. Elevated putamen D2 receptor binding potential in major depression with motor retardation: an [11C]raclopride positron emission tomography study. Am J Psychiatry 2006; 163 (Suppl. 09) 1594-1602.
  • 49 Meyer JH. Applying neuroimaging ligands to study major depressive disorder. Semin Nucl Med 2008; 38 (Suppl. 04) 287-304.
  • 50 Miller JM. et al. Serotonin transporter binding as a possible predictor of one-year remission in major depressive disorder. J Psychiatr Res 2008; 42 (Suppl. 14) 1137-1144.
  • 51 Moeller O, Norra C, Gründer G. Monoaminerge Funktion bei depressiven Patienten. Eine Hilfe bei der Wahl der Behandlungsstrategie?. Nervenarzt 2006; 77: 800-888.
  • 52 Murai T. et al. In vivo evidence for differential association of striatal dopamine and midbrain serotonin systems with neuropsychiatric symptoms in Parkinson’s disease. J Neuropsychiatry Clin Neurosci 2001; 13 (Suppl. 02) 222-228.
  • 53 Murphy DL, Lesch KP. Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci 2008; 9 (Suppl. 02) 85-96.
  • 54 Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 1997; 349 9063 1436-1442.
  • 55 Neuger J. et al. Platelet serotonin functions in untreated major depression. Psychiatry Res 1999; 85 (Suppl. 02) 189-198.
  • 56 Neumeister A. et al. Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Arch Gen Psychiatry 2004; 61 (Suppl. 08) 765-773.
  • 57 Neumeister A. et al. Effects of a alpha 2C-adrenoreceptor gene polymorphism on neural responses to facial expressions in depression. Neuropsychopharmacology 2006; 31 (Suppl. 08) 1750-1756.
  • 58 Ongur D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 2000; 10 (Suppl. 03) 206-219.
  • 59 Ongur D, Ferry AT, Price JL. Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 2003; 460 (Suppl. 03) 425-449.
  • 60 Parsey RV. et al. Regional heterogeneity of 5-HT1A receptors in human cerebellum as assessed by positron emission tomography. J Cereb Blood Flow Metab 2005; 25 (Suppl. 07) 785-793.
  • 61 Parsey RV. et al. Higher 5-HT1A receptor binding potential during a major depressive episode predicts poor treatment response: preliminary data from a naturalistic study. Neuropsychopharmacology, 2006; 31 (Suppl. 08) 1745-1749.
  • 62 Phillips ML. et al. Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biol Psychiatry 2003; 54 (Suppl. 05) 515-528.
  • 63 Praschak-Rieder N. et al. Seasonal variation in human brain serotonin transporter binding. Arch Gen Psychiatry 2008; 65 (Suppl. 09) 1072-1078.
  • 64 Regenthal R. et al. D2 dopamine receptor occupancy, risperidone plasma level and extrapyramidal motor symptoms in previously drug-free schizophrenic patients. Int J Clin Pharmacol Ther 2005; 43 (Suppl. 08) 370-378.
  • 65 Reimold M. et al. Midbrain serotonin transporter binding potential measured with [11C]DASB is affected by serotonin transporter genotype. J Neural Transm 2007; 114 (Suppl. 05) 635-639.
  • 66 Reimold M. et al. Anxiety is associated with reduced central serotonin transporter availability in unmedicated patients with unipolar major depression: a [11C]DASB PET study. Mol Psychiatry 2008; 13 (Suppl. 06) 606-13.
  • 67 Sabri O. et al. Acetylcholine receptors in dementia and mild cognitive impairment. Eur J Nucl Med Mol Imaging 2008; 35 (Suppl. 01) S30-45.
  • 68 Saleem KS, Kondo H, Price JL. Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey. J Comp Neurol 2008; 506 (Suppl. 04) 659-693.
  • 69 Savitz J, Lucki I, Drevets WC. 5-HT1A receptor function in major depressive disorder. Prog Neurobiol 2009; 88 (Suppl. 01) 17-31.
  • 70 Seminowicz DA. et al. Limbic-frontal circuitry in major depression: a path modeling metanalysis. Neuroimage 2004; 22 (Suppl. 01) 409-418.
  • 71 Sheline YI. et al. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 2001; 50 (Suppl. 09) 651-658.
  • 72 Sibon I. et al. Decreased [18F]MPPF binding potential in the dorsal raphe nucleus after a single oral dose of fluoxetine: a positron-emission tomography study in healthy volunteers. Biol Psychiatry 2008; 63 (Suppl. 12) 1135-1140.
  • 73 Slifstein M. et al. Effect of amphetamine on [18F]fallypride in vivo binding to D2 receptors in striatal and extrastriatal regions of the primate brain: Single bolus and bolus plus constant infusion studies. Synapse 2004; 54 (Suppl. 01) 46-63.
  • 74 Suhara T. et al. D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology 1992; 106 (Suppl. 01) 14-18.
  • 75 Takano A. et al. Relationship between neuroticism personality trait and serotonin transporter binding. Biol Psychiatry 2007; 62 (Suppl. 06) 588-592.
  • 76 Tauscher J. et al. Inverse relationship between serotonin 5-HT1A receptor binding and anxiety: a [11C]WAY-100635 PET investigation in healthy volunteers. Am J Psychiatry 2001; 158 (Suppl. 08) 1326-1328.
  • 77 Willeit M. et al. Enhanced serotonin transporter function during depression in seasonal affective disorder. Neuropsychopharmacology 2008; 33 (Suppl. 07) 1503-1513.
  • 78 Yasuno F. et al. PET imaging of neurokinin-1 receptors with [18F]SPA-RQ in human subjects: assessment of reference tissue models and their test-retest reproducibility. Synapse 2007; 61 (Suppl. 04) 242-251.