Vet Comp Orthop Traumatol 2001; 14(03): 133-138
DOI: 10.1055/s-0038-1632687
Original Research
Schattauer GmbH

Intraarticular measurement of forces acting on the canine medial meniscus during motion

M. Messmer
1   Dept. Clinical Veterinary Medicine, Division of Small Animal Surgery and Orthopaedics, University of Berne, Switzerland
,
H. Schmökel
2   Institute of Biomedical Engineering ETH and University of Zurich, Switzerland
,
P. Schawalder
1   Dept. Clinical Veterinary Medicine, Division of Small Animal Surgery and Orthopaedics, University of Berne, Switzerland
› Author Affiliations
Further Information

Publication History

Received 03 November 2000

Accepted 31 January 2001

Publication Date:
09 February 2018 (online)

Summary

Meniscal injuries are currently under much clinical investigation. With regard to tissue engineering strategies for meniscal repair or replacement, the direct measurement of forces applied on the meniscus, during range of motion, could provide important information. This in vitro study using canine cadaver limbs evaluated the possibility of measuring the tibial reaction force, at the medial meniscal level, with film pressure sensors.

The sensors were placed between the medial meniscus and the tibial plateau. With different preloads of the stifle, in proportion to the dog’s total body weight measurements were taken under constant motion with intact and artificially transected cranial cruciate ligament. With an intact cranial cruciate ligament the force peak, under the cranial horn, was found in extension, and under the caudal horn in flexion. Transection of the cranial cruciate ligament led to a rise in mean force under both of the horns. The rise in mean force was higher under the caudal horn compared to the cranial horn. Transection of the cranial cruciate ligament resulted in an altered curve pattern under the caudal medial meniscal horn, which was most apparent with the highest preloads. The sensors were easy to apply, the results substantiated commonly accepted biomechanical predictions and the experimental set-up was found to be a useful tool for the investigation of forces acting on the menisci.

A thin film pressure sensor was implanted under the cranial and caudal medial meniscal horn in 18 canine cadaver stifles and the forces recorded during a constant range of motion with intact and artificially transected cranial cruciate ligaments. The results reflected biomechanical predictions, and the experimental set-up was found to be a useful tool in the investigation of forces acting on the menisci.

 
  • REFERENCES

  • 1 Ahmed AM. The Load- Bearing Role of the Stifle Menisci. In: Stifle Meniscus: Basic and Clinical Foundations. Mow VC, Arnoczky SP, Jackson DW. (Eds). New York: Ravens Press; 59-73 1992
  • 2 Arnoczky SP, DiCarlo EF, O’Brien SJ, Warren RF. Cellular Repopulation of deepfrozen Meniscal Autografts: An experimental Study in the Dog. Arthroscopy 1992; 08: 428-36.
  • 3 Arnoczky SP, Warren RF. The Microvasculature of the Meniscus and its Response to Injury. An Experimental Study in the Dog. Am J Sports Med 1983; 11 (03) 131-41.
  • 4 Bonnin M, Carret JP, Dimnet J. et al. The Weight Bearing Stifle after ACL Rupture. An in vitro Biomechanical Study. Stifle Sur Sports Traumatol Arthrose 1996; 03: 245-51.
  • 5 Budsberg SC, Verstraete MC, Soutas-Little RW. Force Plate Analysis of the Walking Gait in Healthy Dogs. Am J Vet Res 1987; 48 (06) 915-8.
  • 6 De Haven KE. Meniscectomy versus Repair: Clinical Experience. In: Stifle Meniscus: Basic and Clinical Foundations. Mow VC, Arnoczky SP, Jackson DW. (Eds). New York: Ravens Press; 131-9. 1992
  • 7 Ehrismann G, Schmökel HG, Vannini R. Meniskusschaden beim Hund bei gleichzeitigem Riss des vorderen Kreuzbandes. Wien. Tierärztl. Mschr 1994; 81: 42-5.
  • 8 Fairbank TJ. Stifle Joint Changes after Meniscectomy. J Bone Joint Surg 1948; 30B: 664-70.
  • 9 Flo GL. Meniscal injuries. Vet Clin North Am - Small Anim Pract 1983; 23 4, 831-43.
  • 10 Gerber C, Matter P. Biomechanical Analysis of the Stifle after Rupture of the ACL and its Primary Repair. J Bone Joint Surg 1983; 65-B: 391-9.
  • 11 Hallen L, Lindahl O. The Screw- Home Movements in the Stifle. Acta Orthop Scand 1966; 37: 97.
  • 12 Hulse DA, Shires PK. Observation of the Posteromedial Compartment of the Stifle Joint. JAAHA 1981; 17: 575-8.
  • 13 Ibarra C, Hidaka C, Hannafin JA. et al. Tissue Engineered Repair of Canine Meniscus Explants in Vitro and in a Nude Mice model. Trans Orthop Res Soc 1998; 23: 148.
  • 14 Kalund S, Sinkjaer T, Arendt-Nielsen L. et al. Altered Timing of Hamstring Muscle Action in ACL Deficient patients. Am J Sports Med 1990; 18: 245-8.
  • 15 Klompmaker J, Jansen HW, Veth RP. et al. Meniscal Repair by Fibrocartilage? An Experimental Study in the Dog. J Orthop Res 1992; 10: 359-70.
  • 16 Krause WR, Pope MH, Johnson RJ, Wilder DG. Mechanical Changes in the Stifle after Menisectomy. J Bone Joint Surg 1976; 58A: 599-604.
  • 17 Levy IM, Torzilli PA, Fisch ID. The Contribution of the Menisci to the Stability of the Stifle. In: Stifle Meniscus: Basic and Clinical Foundations. Mow VC, Arnoczky SP, Jackson DW. (Eds). New York: Ravens Press; 1992: 107-15.
  • 18 Levy IM, Torzilli PA, Warren RF. The effect of Medial Meniscectomy on Anterior-Posterior Motion of the Stifle. J Bone Joint Surg 1982; 64A: 883-8.
  • 19 Maitra RS, Miller MD, Johnson DL. Meniscal Reconstruction. Part I: Indications, Techniques, and Graft Considerations. Am J Orthop 1999; 28 (04) 213-8.
  • 20 Paatsama S. Ligamentous Injuries of the Canine Stifle Joint. A Clinical and Experimental Study. Helsinki, Thesis 1952
  • 21 Radin E, De Lamotte F, Maquet P. Role of the Menisci in the Distribution of Stress in the Stifle. Clin Orthop 185: 290-4.
  • 22 Roeddecker K, Muennich U, Nagelschmidt M. 1994: Meniscal Healing: A Biomechanical Study. J Surg Res 1984; 56: 20-7.
  • 23 Sawaya S. Biomechanique du Genou chez le Chien: Étude morpho-architecturale de L’extrémité articulaire proximale du Tibia. Déduction quant à l’Aspect des Sollicitations mechaniques sur le Genou sain et sur le Genou instable. Revue Méd Vét 1995; 146 (07) 467-80.
  • 24 Sawaya S, Ramet R. Sollicitations des Structures Articulaires du Genou, avant et après Section du Ligament Croisé crânial, chez le Chien en Appui Quadrupédal statique. Etude extensiométrique. Revue Méd.Vét 1997; 148 (07) 595-608.
  • 25 Slocum B, Devine TD. Cranial Tibial Thrust: A primary Force in the Canine Stifle. J Am Vet Med Assoc 1983; 183: 456.
  • 26 Valdevit A, Ortega-Garcia J, Kambic H. et al. Characterization and Application of thin Film Pressure Sensors. Biomed Mater Eng 1999; 09: 81-8.
  • 27 Vedi V, Williams A, Tennant SJ. et al. Meniscal Movement. An In-Vivo Study Using Dynamic MRI. J Bone Joint Surg (BR) 1999; 81-B: 37-41.
  • 28 Voloshin AB, Wosk J. Shock Absorption of Meniscectomized and Painful Stifles: A comparative in vivo Study. J Biomech Eng 1983; 05: 157-61.
  • 29 Walker PS, Erkmann MJ. The Role of the Menisci in Force Transmission across the Stifle. Clin Orthop 1975; 109: 184-92.
  • 30 Yasuda K, Sasaki T. Muscle Exercise after ACL Reconstruction. Biomechanics of the Simultaneous Isometric Contraction Method of the Quadriceps and the Hamstrings. Clin Orthop 1987a 220: 266-74.
  • 31 Yasuda K, Sasaki T. Exercise after ACL Reconstruction. The Force exerted on the Tibia by the Separate Isometric Contraction of the Quadriceps or the Hamstrings. Clin Orthop 1987b 220: 275-83.